ﻻ يوجد ملخص باللغة العربية
We have performed a high resolution 4-13 ${mu}m$ spectral survey of the hot molecular gas associated with the massive protostars AFGL 2591 and AFGL 2136, utilising the Echelon-Cross-Echelle-Spectrograph (EXES) on-board the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the iSHELL instrument and Texas Echelon Cross Echelle Spectrograph (TEXES) on the NASA Infrared Telescope Facility (IRTF). Here we present results of this survey with analysis of CO, HCN, C$_2$H$_2$, NH$_3$ and CS, deriving the physical conditions for each species. Also from the IRTF, iSHELL data at 3 ${mu}m$ for AFGL 2591 are presented that show HCN and C$_2$H$_2$ in emission. In the EXES and TEXES data, all species are detected in absorption, and temperatures and abundances are found to be high (600 K and 10$^{-6}$, respectively). Differences of up to an order of magnitude in the abundances of transitions that trace the same ground state level are measured for HCN and C$_2$H$_2$. The mid-infrared continuum is known to originate in a disk, hence we attribute the infrared absorption to arise in the photosphere of the disk. As absorption lines require an outwardly decreasing temperature gradient, we conclude that the disk is heated in the mid-plane by viscous heating due to accretion. We attribute the near-IR emission lines to scattering by molecules in the upper layers of the disk photosphere. The absorption lines trace the disk properties at 50 AU where a high temperature gas-phase chemistry is taking place. Abundances are consistent with chemical models of the inner disk of Herbig disks.
We present high spectral resolution (~3 km/s) observations of the nu_2 ro-vibrational band of H2O in the 6.086--6.135 micron range toward the massive protostar AFGL 2591 using the Echelon-Cross-Echelle Spectrograph (EXES) on the Stratospheric Observa
Increasing evidence suggests that, similar to their low-mass counterparts, high-mass stars form through a disk-mediated accretion process. At the same time, formation of high-mass stars still necessitates high accretion rates, and hence, high gas den
An observational review is provided of the properties of accretion disks around young stars. It concerns the primordial disks of intermediate- and high-mass young stellar objects in embedded and optically revealed phases. The properties were derived
We observed the embedded, young 8--10 Msun star AFGL 490 at subarcsecond resolution with the Plateau de Bure Interferometer in the C17O (2--1) transition and found convincing evidence that AFGL 490 is surrounded by a rotating disk. Using two-dimensio
This paper presents the richness of submillimeter spectral features in the high-mass star forming region AFGL 2591. As part of the CHESS (Chemical Herschel Survey of Star Forming Regions) Key Programme, AFGL 2591 was observed by the Herschel/HIFI ins