ﻻ يوجد ملخص باللغة العربية
Recently, halide perovskites have gained significant attention from the perspective of efficient spintronics owing to Rashba effect. This effect occurs as a consequence of strong spin-orbit coupling under noncentrosymmetric environment, which can be dynamic and/or static. However, there exist intense debates on the origin of broken inversion symmetry since the halide perovskites typically crystallize into a centrosymmetric structure. In order to clarify the issue, we examine both dynamic and static effects in the all-inorganic CsPbBr3 and organic-inorganic CH3NH3PbBr3 (MAPbBr3) perovskite single crystals by employing temperature- and polarization-dependent photoluminescence excitation spectroscopy. The perovskite single crystals manifest the dynamic effect by photon recycling in the indirect Rashba gap, causing dual peaks in the photoluminescence. But the effect vanishes in CsPbBr3 at low temperatures (< 50 K), accompanied by a striking color change of the crystal, arising presumably from lower degrees of freedom for inversion symmetry breaking associated with the thermal motion of the spherical Cs cation, compared with the polar MA cation in MAPbBr3. We also show that static Rashba effect occurs only in MAPbBr3 below 90 K due to surface reconstruction via MA-cation ordering, which likely extends across a few layers from the crystal surface to the interior. We further demonstrate that this static Rashba effect can be completely suppressed upon surface treatment with poly methyl methacrylate (PMMA) coating. We believe that our results provide a rationale for the Rashba effects in halide perovskites.
Optical control of Dirac surface states (SS) in topological insulators (TI) remains one of the most challenging problems governing their potential applications in novel electronic and spintronic devices. Here, using visible-range transient absorption
Van der Waals heterostructures formed by stacking different types of 2D materials are attracting increasing attention due to new emergent physical properties such as interlayer excitons. Recently synthesized atomically thin indium selenide (InSe) and
We report microscale friction experiments for diamond/metal and diamond/silica contacts under gigapascal contact pressures. Using a new nanoprobe technique which has sufficient dynamic range of force and stiffness, we demonstrate the processes involv
One of the long sought-after goals in manipulation of light through light-matter interactions is the realization of magnetic-field-tuneable colouration, so-called magneto-chromatic effect, which holds great promise for optical, biochemical and medica
We report the temperature dependent mid- and near-infrared spectra of K4C60, Rb4C60 and Cs4C60. The splitting of the vibrational and electronic transitions indicates a molecular symmetry change of C604- which brings the fulleride anion from D2h to ei