ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of strange non-strange hadron ratios in pp and p-Pb collisions at LHC energies

74   0   0.0 ( 0 )
 نشر من قبل Sarita Sahoo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been observed that the yields of strange and multi-strange hadrons relative to pion increase significantly with the event charged-particle multiplicity. We notice from experimental data that yield ratios between non-strange hadrons, like p/$pi$ or hadrons of same strange content, like $Lambda$/K$_s^0$, show similar enhancement. We have studied this behavior within the ambit of a parton model (EPOS3) and A Multi-Phase Transport (AMPT) model in pp and p-Pb collisions at LHC energies. We investigate model predictions of yields and yield ratios of different identified hadron productions as a function of charged-particle multiplicity and compare them with published ALICE results. The string melti



قيم البحث

اقرأ أيضاً

In this article, we will present a systematic analysis of transverse momentum spectra of the strange hadron in different multiplicity events produced in pp collision at $sqrt{s}$ = 7 TeV, pPb collision at $sqrt{s_{NN}}$ = 5.02 TeV and PbPb collision at $sqrt{s_{NN}}$ = 2.76 TeV. The differential freeze out scenario of strange hadron $K^{0}_{s}$ assumed while analyzing the data using a Tsallis distribution which is modified to include transverse flow. The $p_{T}$ distributions of strange hadron in different systems are characterized in terms of the parameters namely, Tsallis temperature ($T$), power ($n$) and average transverse flow velocity ($beta$).
We present a systematic analysis of transverse momentum $(p_{T})$ spectra of the strange hadrons in different multiplicity events produced in pp collision at $sqrt{s}$ = 7 TeV, pPb collision at $sqrt{s_{NN}}$ = 5.02 TeV and PbPb collision at $sqrt{s_ {NN}}$ = 2.76 TeV. Both the single and differential freeze out scenarios of strange hadrons $K^0_s$, $Lambda$ and $Xi^-$ are considered while fitting using a Tsallis distribution which is modified to include transverse flow. The $p_{T}$ distributions of these hadrons in different systems are characterized in terms of the parameters namely, Tsallis temperature $(T)$, power $(n)$ and average transverse flow velocity $(beta)$. It is found that for all the systems, transverse flow increases as we move from lower to higher multiplicity events. In the case of the differential freeze-out scenario, the degree of thermalization remains similar for events of different multiplicity classes in all the three systems. The Tsallis temperature increases with the mass of the hadrons and also increases with the event multiplicity in pp and pPb system but shows little variation with the multiplicity in PbPb system. In the case of the single freeze-out scenario, the difference between small systems (pp, pPb) and PbPb system becomes more evident. The high multiplicity PbPb events show higher degree of thermalization as compared to the events of pp and pPb systems. The trend of variation of the temperature in PbPb system with event multiplicity is opposite to what is found in the pp and pPb systems.
114 - Sushanta Tripathy 2020
Recent results for high multiplicity pp and p-Pb collisions have revealed that they exhibit heavy-ion-like behaviors. To understand the origin(s) of these unexpected phenomena, event shape observables such as transverse spherocity ($S_{rm 0}^{p_{rm T } = 1}$) and the relative transverse activity classifier ($R_{rm{T}}$) can be exploited as a powerful tools to disentangle soft (non-perturbative) and hard (perturbative) particle production. Here, the production of light-flavor hadrons is shown for various $S_{rm 0}^{p_{rm T} = 1}$ classes in pp collisions at $sqrt{s}$ = 13 $textrm{TeV}$ measured with the ALICE detector at the LHC are presented. The evolution of average transverse momentum ($langle p_{rm T}rangle$) with charged-particle multiplicity, and identified particle ratios as a function of $p_{rm T}$ for different $S_{rm 0}^{p_{rm T} = 1}$ are also presented. In addition, the system size dependence of charged-particle production in pp, p-Pb, and Pb-Pb collisions at $sqrt{s_{rm NN}}$ = 5.02 TeV is presented. The evolution of $langle p_{rm T}rangle$ in different topological regions as a function of $R_{rm{T}}$ are presented. Finally, using the same approach, we present a search for jet quenching behavior in small collision systems.
We present theoretical model comparison with published ALICE results for D-mesons (D$^0$, D$^+$ and D$^{*+}$) in $p$+$p$ collisions at $sqrt{s}$ = 7 TeV and $p$+Pb collisions at $sqrt{s_{NN}}$ = 5.02 TeV. Event generator HIJING, transport calculation of AMPT and calculations from NLO(MNR) and FONLL have been used for this study. We found that HIJING and AMPT model predictions are matching with published D-meson cross-sections in $p$+$p$ collisions, while both under-predict the same in $p$+Pb collisions. Attempts were made to explain the $R_{pPb}$ data using NLO-pQCD(MNR), FONLL and other above mentioned models.
The mass dependence plays a significant role in the yield enhancement or suppression of hadrons in pp and p-Pb collisions at the LHC energies. This has been observed by parameterizing the variation of yield ratios between any two hadrons with event c harged-particle multiplicity using a single empirical function. We notice that this variation is independent of all quantum numbers and solely depends on masses of hadrons and masses of their valence quarks. The function shows that the amount of quark deconfinement increases with event multiplicity, and the quark coalescence favours more the production of heavier hadrons compared to lighter ones.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا