ﻻ يوجد ملخص باللغة العربية
We investigate a repeated two-player zero-sum game setting where the column player is also a designer of the system, and has full control on the design of the payoff matrix. In addition, the row player uses a no-regret algorithm to efficiently learn how to adapt their strategy to the column players behaviour over time in order to achieve good total payoff. The goal of the column player is to guide her opponent to pick a mixed strategy which is favourable for the system designer. Therefore, she needs to: (i) design an appropriate payoff matrix $A$ whose unique minimax solution contains the desired mixed strategy of the row player; and (ii) strategically interact with the row player during a sequence of plays in order to guide her opponent to converge to that desired behaviour. To design such a payoff matrix, we propose a novel solution that provably has a unique minimax solution with the desired behaviour. We also investigate a relaxation of this problem where uniqueness is not required, but all the minimax solutions have the same mixed strategy for the row player. Finally, we propose a new game playing algorithm for the system designer and prove that it can guide the row player, who may play a emph{stable} no-regret algorithm, to converge to a minimax solution.
Counterfactual Regret Minimization (CFR) is an efficient no-regret learning algorithm for decision problems modeled as extensive games. CFRs regret bounds depend on the requirement of perfect recall: players always remember information that was revea
The existence of simple, uncoupled no-regret dynamics that converge to correlated equilibria in normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known for more than 20 years that when all player
This paper examines the convergence of no-regret learning in Cournot games with continuous actions. Cournot games are the essential model for many socio-economic systems, where players compete by strategically setting their output quantity. We assume
We consider a scheduling problem where a cloud service provider has multiple units of a resource available over time. Selfish clients submit jobs, each with an arrival time, deadline, length, and value. The service providers goal is to implement a tr
Some of the most compelling applications of online convex optimization, including online prediction and classification, are unconstrained: the natural feasible set is R^n. Existing algorithms fail to achieve sub-linear regret in this setting unless c