ﻻ يوجد ملخص باللغة العربية
This paper has two main parts. First, we consider the Tutte symmetric function $XB$, a generalization of the chromatic symmetric function. We introduce a vertex-weighted version of $XB$ and show that this function admits a deletion-contraction relation. We also demonstrate that the vertex-weighted $XB$ admits spanning-tree and spanning-forest expansions generalizing those of the Tutte polynomial by connecting $XB$ to other graph functions. Second, we give several methods for constructing nonisomorphic graphs with equal chromatic and Tutte symmetric functions, and use them to provide specific examples.
This paper deals with the so-called Stanley conjecture, which asks whether they are non-isomorphic trees with the same symmetric function generalization of the chromatic polynomial. By establishing a correspondence between caterpillars trees and inte
In this paper, we propose an algebraic approach to determine whether two non-isomorphic caterpillar trees can have the same symmetric function generalization of the chromatic polynomial. On the set of all composition on integers, we introduce: An ope
A graph $Gamma$ is said to be symmetric if its automorphism group $rm Aut(Gamma)$ acts transitively on the arc set of $Gamma$. In this paper, we show that if $Gamma$ is a finite connected heptavalent symmetric graph with solvable stabilizer admitting
An intuitive property of a random graph is that its subgraphs should also appear randomly distributed. We consider graphs whose subgraph densities exactly match their expected values. We call graphs with this property for all subgraphs with $k$ verti
We discuss transpose (sometimes called universal exchange or all-to-all) on vertex symmetric networks. We provide a method to compare the efficiency of transpose schemes on two different networks with a cost function based on the number processors an