ﻻ يوجد ملخص باللغة العربية
We study the co-evolution between the black hole accretion rate (BHAR) and the star formation rate (SFR) in different galaxy life phases: main sequence star-forming galaxies, quiescent and starburst galaxies at different cosmic epochs. We take advantage of the X-ray data from the Chandra COSMOS-Legacy survey and of the extensive multiwavelength ancillary observations in the COSMOS field presented in the COSMOS2015 catalog. We perform an X-ray stacking analysis and combine it with detected sources, in a broad redshift interval ($0.1<z<3.5$). The X-ray luminosity is used to predict the BHAR, while a similar stacking analysis on far-infrared Herschel maps is used to measure the corresponding SFR. We focus on the evolution of the average SFR-stellar mass (M*) relation and compare it with the BHAR-M* relation. We find that the ratio between BHAR and SFR does not evolve with redshift, although it depends on stellar mass. For the star-forming populations, this dependence on M* has a logarithmic slope of $sim0.6$, for the starburst sample of $sim0.4$, both at odds with quiescent sources where it remains constant ($log(rm {BHAR}/{rm SFR})sim -3.4$). By studying the specific BHAR and specific SFR we find signs of downsizing for both M* and black hole mass (M$_{rm BH}$): quiescents grew their super-massive black hole at very early times, while star-forming and starburst galaxies had an accretion that endured until more recent times. Our results support the idea that the same physical processes feed and sustain both star formation and black hole accretion. Our integrated estimates of the M*-M$_{rm BH}$ relation at all redshifts are consistent with independent determinations of the local M*-M$_{rm BH}$ relation, thus adding key evidence to a weak evolution in the BHAR/SFR, and its low normalization compared to local dynamical M*-M$_{rm BH}$ relations.
We present a new suite of hydrodynamical simulations and use it to study, in detail, black hole and galaxy properties. The high time, spatial and mass resolution, and realistic orbits and mass ratios, down to 1:6 and 1:10, enable us to meaningfully c
We present a study of the star formation and central black hole accretion activity of the galaxies hosted in the two nearby (z$sim$0.2) rich galaxy clusters Abell 983 and 1731. Aims: We are able to quantify both the obscured and unobscured star forma
Black hole accretion is widely thought to influence star formation in galaxies, but the empirical evidence for a physical correlation between star formation rate (SFR) and the properties of active galactic nuclei (AGNs) remains highly controversial.
We report herschel observations of 100 very luminous, optically selected AGNs at z=2-3.5 with log(LUV)(erg/sec)> 46.5, where LUV=L1350A. The distribution in LUV is similar to the general distribution of SDSS AGNs in this redshift and luminosity inter
Local luminous infrared (IR) galaxies (LIRGs) have both high star formation rates (SFR) and a high AGN (Seyfert and AGN/starburst composite) incidence. Therefore, they are ideal candidates to explore the co-evolution of black hole (BH) growth and sta