ﻻ يوجد ملخص باللغة العربية
The presence of two spin-split valleys in monolayer (1L) transition metal dichalcogenide (TMD) semiconductors supports versatile exciton species classified by their spin and valley quantum numbers. While the spin-0 intravalley exciton, known as the bright exciton, is readily observable, other types of excitons, such as the spin-1 intravalley (spin-dark) and spin-0 intervalley (momentum-dark) excitons, are more difficult to access. Here we develop a waveguide coupled 1L tungsten diselenide (WSe2) device to probe these exciton species. In particular, TM coupling to the atomic layers out-of-plane dipole moments enabled us to not only efficiently collect, but also resonantly populate the spin-1 dark excitons, promising for developing devices with long valley lifetimes. Our work reveals several upconversion processes that bring out an intricate coupling network linking spin-0 and spin-1 intra- and inter-valley excitons, demonstrating that intervalley scattering and spin-flip are very common processes in the atomic layer. These experimental results deepen our understanding of tungsten diselenide exciton physics and illustrate that planar photonic devices are capable of harnessing versatile exciton species in TMD semiconductors.
Monolayer transition metal dichalcogenides (TMDs) hold great promise for future information processing applications utilizing a combination of electron spin and valley pseudospin. This unique spin system has led to observation of the valley Zeeman ef
Due to degeneracies arising from crystal symmetries, it is possible for electron states at band edges (valleys) to have additional spin-like quantum numbers. An important question is whether coherent manipulation can be performed on such valley pseud
Single-layer transition metal dichalcogenides (TMDs) provide a promising material system to explore the electrons valley degree of freedom as a quantum information carrier. The valley degree of freedom in single-layer TMDs can be directly accessed by
We observe a set of three replica luminescent peaks at ~21.4 meV below the dark exciton, negative and positive dark trions (or exciton-polarons) in monolayer WSe2. The replica redshift energy matches the energy of the zone-center E-mode optical phono
Two-dimensional (2D) materials, such as graphene1, boron nitride2, and transition metal dichalcogenides (TMDs)3-5, have sparked wide interest in both device physics and technological applications at the atomic monolayer limit. These 2D monolayers can