ﻻ يوجد ملخص باللغة العربية
Regression models with crossed random effect errors can be very expensive to compute. The cost of both generalized least squares and Gibbs sampling can easily grow as $N^{3/2}$ (or worse) for $N$ observations. Papaspiliopoulos et al. (2020) present a collapsed Gibbs sampler that costs $O(N)$, but under an extremely stringent sampling model. We propose a backfitting algorithm to compute a generalized least squares estimate and prove that it costs $O(N)$. A critical part of the proof is in ensuring that the number of iterations required is $O(1)$ which follows from keeping a certain matrix norm below $1-delta$ for some $delta>0$. Our conditions are greatly relaxed compared to those for the collapsed Gibbs sampler, though still strict. Empirically, the backfitting algorithm has a norm below $1-delta$ under conditions that are less strict than those in our assumptions. We illustrate the new algorithm on a ratings data set from Stitch Fix.
The cost of both generalized least squares (GLS) and Gibbs sampling in a crossed random effects model can easily grow faster than $N^{3/2}$ for $N$ observations. Ghosh et al. (2020) develop a backfitting algorithm that reduces the cost to $O(N)$. Her
To fast approximate maximum likelihood estimators with massive data, this paper studies the Optimal Subsampling Method under the A-optimality Criterion (OSMAC) for generalized linear models. The consistency and asymptotic normality of the estimator f
We develop a novel decouple-recouple dynamic predictive strategy and contribute to the literature on forecasting and economic decision making in a data-rich environment. Under this framework, clusters of predictors generate different latent states in
In this paper, we analyze the convergence rate of a collapsed Gibbs sampler for crossed random effects models. Our results apply to a substantially larger range of models than previous works, including models that incorporate missingness mechanism an
This work relates the framework of model-based clustering for spatial functional data where the data are surfaces. We first introduce a Bayesian spatial spline regression model with mixed-effects (BSSR) for modeling spatial function data. The BSSR mo