ترغب بنشر مسار تعليمي؟ اضغط هنا

SSIDS: Semi-Supervised Intrusion Detection System by Extending the Logical Analysis of Data

57   0   0.0 ( 0 )
 نشر من قبل Sugata Gangopadhyay
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Prevention of cyber attacks on the critical network resources has become an important issue as the traditional Intrusion Detection Systems (IDSs) are no longer effective due to the high volume of network traffic and the deceptive patterns of network usage employed by the attackers. Lack of sufficient amount of labeled observations for the training of IDSs makes the semi-supervised IDSs a preferred choice. We propose a semi-supervised IDS by extending a data analysis technique known as Logical Analysis of Data, or LAD in short, which was proposed as a supervised learning approach. LAD uses partially defined Boolean functions (pdBf) and their extensions to find the positive and the negative patterns from the past observations for classification of future observations. We extend the LAD to make it semi-supervised to design an IDS. The proposed SSIDS consists of two phases: offline and online. The offline phase builds the classifier by identifying the behavior patterns of normal and abnormal network usage. Later, these patterns are transformed into rules for classification and the rules are used during the online phase for the detection of abnormal network behaviors. The performance of the proposed SSIDS is far better than the existing semi-supervised IDSs and comparable with the supervised IDSs as evident from the experimental results.



قيم البحث

اقرأ أيضاً

A novel approach to analyze statistically the network traffic raw data is proposed. The huge amount of raw data of actual network traffic from the Intrusion Detection System is analyzed to determine if a traffic is a normal or harmful one. Using the active ports in each host in a network as sensors, the system continuously monitors the incoming packets, and generates its average behaviors at different time scales including its variances. The average region of behaviors at certain time scale is then being used as the baseline of normal traffic. Deploying the exhaustive search based decission system, the system detects the incoming threats to the whole network under supervision.
Attackers have developed ever more sophisticated and intelligent ways to hack information and communication technology systems. The extent of damage an individual hacker can carry out upon infiltrating a system is well understood. A potentially catas trophic scenario can be envisaged where a nation-state intercepting encrypted financial data gets hacked. Thus, intelligent cybersecurity systems have become inevitably important for improved protection against malicious threats. However, as malware attacks continue to dramatically increase in volume and complexity, it has become ever more challenging for traditional analytic tools to detect and mitigate threat. Furthermore, a huge amount of data produced by large networks has made the recognition task even more complicated and challenging. In this work, we propose an innovative statistical analysis driven optimized deep learning system for intrusion detection. The proposed intrusion detection system (IDS) extracts optimized and more correlated features using big data visualization and statistical analysis methods (human-in-the-loop), followed by a deep autoencoder for potential threat detection. Specifically, a pre-processing module eliminates the outliers and converts categorical variables into one-hot-encoded vectors. The feature extraction module discard features with null values and selects the most significant features as input to the deep autoencoder model (trained in a greedy-wise manner). The NSL-KDD dataset from the Canadian Institute for Cybersecurity is used as a benchmark to evaluate the feasibility and effectiveness of the proposed architecture. Simulation results demonstrate the potential of our proposed system and its outperformance as compared to existing state-of-the-art methods and recently published novel approaches. Ongoing work includes further optimization and real-time evaluation of our proposed IDS.
This paper proposes an intrusion detection and prediction system based on uncertain and imprecise inference networks and its implementation. Giving a historic of sessions, it is about proposing a method of supervised learning doubled of a classifier permitting to extract the necessary knowledge in order to identify the presence or not of an intrusion in a session and in the positive case to recognize its type and to predict the possible intrusions that will follow it. The proposed system takes into account the uncertainty and imprecision that can affect the statistical data of the historic. The systematic utilization of an unique probability distribution to represent this type of knowledge supposes a too rich subjective information and risk to be in part arbitrary. One of the first objectives of this work was therefore to permit the consistency between the manner of which we represent information and information which we really dispose.
Internet has played a vital role in this modern world, the possibilities and opportunities offered are limitless. Despite all the hype, Internet services are liable to intrusion attack that could tamper the confidentiality and integrity of important information. An attack started with gathering the information of the attack target, this gathering of information activity can be done as either fast or slow attack. The defensive measure network administrator can take to overcome this liability is by introducing Intrusion Detection Systems (IDSs) in their network. IDS have the capabilities to analyze the network traffic and recognize incoming and on-going intrusion. Unfortunately the combination of both modules in real time network traffic slowed down the detection process. In real time network, early detection of fast attack can prevent any further attack and reduce the unauthorized access on the targeted machine. The suitable set of feature selection and the correct threshold value, add an extra advantage for IDS to detect anomalies in the network. Therefore this paper discusses a new technique for selecting static threshold value from a minimum standard features in detecting fast attack from the victim perspective. In order to increase the confidence of the threshold value the result is verified using Statistical Process Control (SPC). The implementation of this approach shows that the threshold selected is suitable for identifying the fast attack in real time.
Network intrusion is a well-studied area of cyber security. Current machine learning-based network intrusion detection systems (NIDSs) monitor network data and the patterns within those data but at the cost of presenting significant issues in terms o f privacy violations which may threaten end-user privacy. Therefore, to mitigate risk and preserve a balance between security and privacy, it is imperative to protect user privacy with respect to intrusion data. Moreover, cost is a driver of a machine learning-based NIDS because such systems are increasingly being deployed on resource-limited edge devices. To solve these issues, in this paper we propose a NIDS called PCC-LSM-NIDS that is composed of a Pearson Correlation Coefficient (PCC) based feature selection algorithm and a Least Square Method (LSM) based privacy-preserving algorithm to achieve low-cost intrusion detection while providing privacy preservation for sensitive data. The proposed PCC-LSM-NIDS is tested on the benchmark intrusion database UNSW-NB15, using five popular classifiers. The experimental results show that the proposed PCC-LSM-NIDS offers advantages in terms of less computational time, while offering an appropriate degree of privacy protection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا