ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel repumping on $^{3}$P$_{0}$$rightarrow$$^{3}$D$_{1}$ for Sr magneto-optical trap and Lande g factor measurement of $^{3}$D$_{1}$

94   0   0.0 ( 0 )
 نشر من قبل Shengnan Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We realize an experimental facility for cooling and trapping strontium (Sr) atoms and measure the Lande g factor of $^{3}$D$_{1}$ of $^{88}$Sr. Thanks to a novel repumping scheme with the $^{3}$P$_{2}$$rightarrow$$^{3}$S$_{1}$ and $^{3}$P$_{0}$$rightarrow$$^{3}$D$_{1}$ combination and the permanent magnets based self-assembled Zeeman slower, the peak atom number in the continuously repumped blue MOT is enhanced by a factor of 15 with respect to the non-repumping case, and reaches $sim$1 billion. Furthermore, using the resolved-sideband Zeeman spectroscopy, the Lande g factor of $^{3}$D$_{1}$ is measured to be 0.4995(88) showing a good agreement with the theoretical value of 0.4988. The results will have an impact on various applications including atom laser, dipolar interactions, quantum information and precision measurements.



قيم البحث

اقرأ أيضاً

We report three-dimensional trapping of an oxide molecule (YO), using a radio-frequency magneto-optical trap (MOT). The total number of molecules loaded is $sim$1.5$times10^4$ , with a temperature of 7(1)~mK. This diversifies the frontier of molecule s that are laser coolable and paves the way for the second-stage narrow-line cooling in this molecule to the microkelvin regime. Futhermore, the new challenges of creating a 3-D MOT of YO resolved here indicate that MOTs of more complex non-linear molecules should be feasible as well.
148 - B. M. Henson 2017
The workhorse of atomic physics, quantum electrodynamics, is one of the best-tested theories in physics. However recent discrepancies have shed doubt on its accuracy for complex atomic systems. To facilitate the development of the theory further we a im to measure transition dipole matrix elements of metastable helium (He*) (the ideal 3 body test-bed) to the highest accuracy thus far. We have undertaken a measurement of the `tune-out wavelength which occurs when the contributions to the dynamic polarizability from all atomic transitions sum to zero; thus illuminating an atom with this wavelength of light then produces no net energy shift. This provides a strict constraint on the transition dipole matrix elements without the complication and inaccuracy of other methods. Using a novel atom-laser based technique we have made the first measurement of the tune-out wavelength in metastable helium between the $3^{3}P_{1,2,3}$ and $2^{3}P_{1,2,3}$ states at 413.07(2) nm which compares well with the predicted valuecite{Mitroy2013} of 413.02(9) nm. We have additionally developed many of the methods necessary to improve this measurement to the 100 fm level of accuracy where it will form the most accurate determination of transition rate information ever made in He* and provide a stringent test for atomic QED simulations. We believe this measurement to be one of the most sensitive ever made of an optical dipole potential, able to detect changes in potentials of $sim$200 pK and is widely applicable to other species and areas of atom optics.
We study the problem of disorder-free metals near a continuous Ising nematic quantum critical point in $d=3+1$ dimensions. We begin with perturbation theory in the `Yukawa coupling between the electrons and undamped bosons (nematic order parameter fl uctuations) and show that the perturbation expansion breaks down below energy scales where the bosons get substantially Landau damped. Above this scale however, we find a regime in which low-energy fermions obtain an imaginary self-energy that varies linearly with frequency, realizing the `marginal Fermi liquid phenomenologycite{Varma}. We discuss a large N theory in which the marginal Fermi liquid behavior is enhanced while the role of Landau damping is suppressed, and show that quasiparticles obtain a decay rate parametrically larger than their energy.
We report an observation of the weak $6^{1}$S$_{0}$-$6^3$P$_0$ transition in $^{171,173}$Yb as an important step to establish Yb as a primary candidate for future optical frequency standards, and to open up a new approach for qubits using the $^{1}$S $_{0}$ and $^3$P$_0$ states of Yb atoms in an optical lattice.
We present the detection of the highly forbidden $2^{3!}S_1 rightarrow 3^{3!}S_1$ atomic transition in helium, the weakest transition observed in any neutral atom. Our measurements of the transition frequency, upper state lifetime, and transition str ength agree well with published theoretical values, and can lead to tests of both QED contributions and different QED frameworks. To measure such a weak transition, we developed two methods using ultracold metastable ($2^{3!}S_1$) helium atoms: low background direct detection of excited then decayed atoms for sensitive measurement of the transition frequency and lifetime; and a pulsed atom laser heating measurement for determining the transition strength. These methods could possibly be applied to other atoms, providing new tools in the search for ultra-weak transitions and precision metrology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا