ﻻ يوجد ملخص باللغة العربية
We report experimentally and in theory on the detection of edge information in digital images using ultrafast spiking optical artificial neurons towards convolutional neural networks (CNNs). In tandem with traditional convolution techniques, a photonic neuron model based on a Vertical-Cavity Surface Emitting Laser (VCSEL) is implemented experimentally to threshold and activate fast spiking responses upon the detection of target edge features in digital images. Edges of different directionalities are detected using individual kernel operators and complete image edge detection is achieved using gradient magnitude. Importantly, the neuromorphic (brain-like) image edge detection system of this work uses commercially sourced VCSELs exhibiting spiking responses at sub-nanosecond rates (many orders of magnitude faster than biological neurons) and operating at the telecom wavelength of 1300 nm; hence making our approach compatible with optical communication and data-center technologies. These results therefore have exciting prospects for ultrafast photonic implementations of neural networks towards computer vision and decision making systems for future artificial intelligence applications.
All-optical binary convolution with a photonic spiking vertical-cavity surface-emitting laser (VCSEL) neuron is proposed and demonstrated experimentally for the first time. Optical inputs, extracted from digital images and temporally encoded using re
We present a new convolutional neural network (CNN) based ImageJ plugin for fluorescence microscopy image denoising with an average improvement of 7.5 dB in peak signal-to-noise ratio (PSNR) and denoising instantly within 80 msec.
Purpose: We propose a deep learning-based computer-aided detection (CADe) method to detect breast lesions in ultrafast DCE-MRI sequences. This method uses both the three-dimensional spatial information and temporal information obtained from the early
We train spiking deep networks using leaky integrate-and-fire (LIF) neurons, and achieve state-of-the-art results for spiking networks on the CIFAR-10 and MNIST datasets. This demonstrates that biologically-plausible spiking LIF neurons can be integr
We introduce a new supervised learning algorithm based to train spiking neural networks for classification. The algorithm overcomes a limitation of existing multi-spike learning methods: it solves the problem of interference between interacting outpu