ﻻ يوجد ملخص باللغة العربية
Tree-child networks are a recently-described class of directed acyclic graphs that have risen to prominence in phylogenetics (the study of evolutionary trees and networks). Although these networks have a number of attractive mathematical properties, many combinatorial questions concerning them remain intractable. In this paper, we show that endowing these networks with a biologically relevant ranking structure yields mathematically tractable objects, which we term ranked tree-child networks (RTCNs). We explain how to derive exact and explicit combinatorial results concerning the enumeration and generation of these networks. We also explore probabilistic questions concerning the properties of RTCNs when they are sampled uniformly at random. These questions include the lengths of random walks between the root and leaves (both from the root to the leaves and from a leaf to the root); the distribution of the number of cherries in the network; and sampling RTCNs conditional on displaying a given tree. We also formulate a conjecture regarding the scaling limit of the process that counts the number of lineages in the ancestry of a leaf. The main idea in this paper, namely using ranking as a way to achieve combinatorial tractability, may also extend to other classes of networks.
The class of ranked tree-child networks, tree-child networks arising from an evolution process with a fixed embedding into the plane, has recently been introduced by Bienvenu, Lambert, and Steel. These authors derived counting results for this class.
Phylogenetic trees canonically arise as embeddings of phylogenetic networks. We recently showed that the problem of deciding if two phylogenetic networks embed the same sets of phylogenetic trees is computationally hard, blue{in particular, we showed
It is well known that excessive harvesting or hunting has driven species to extinction both on local and global scales. This leads to one of the fundamental problems of conservation ecology: how should we harvest a population so that economic gain is
For each $n ge 1$, let $mathrm{d}^n=(d^{n}(i),1 le i le n)$ be a sequence of positive integers with even sum $sum_{i=1}^n d^n(i) ge 2n$. Let $(G_n,T_n,Gamma_n)$ be uniformly distributed over the set of simple graphs $G_n$ with degree sequence $mathrm
Phylogenetic diversity indices provide a formal way to apportion evolutionary heritage across species. Two natural diversity indices are Fair Proportion (FP) and Equal Splits (ES). FP is also called evolutionary distinctiveness and, for rooted trees,