ترغب بنشر مسار تعليمي؟ اضغط هنا

Khovanov-Lipshitz-Sarkar homotopy type for links in thickened higher genus surfaces

64   0   0.0 ( 0 )
 نشر من قبل Igor Nikonov
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss links in thickened surfaces. We define the Khovanov-Lipshitz-Sarkar stable homotopy type and the Steenrod square for the homotopical Khovanov homology of links in thickened surfaces with genus$>1$. A surface means a closed oriented surface unless otherwise stated. Of course, a surface may or may not be the sphere. A thickened surface means a product manifold of a surface and the interval. A link in a thickened surface (respectively, a 3-manifold) means a submanifold of a thickened surface (respectively, a 3-manifold) which is diffeomorphic to a disjoint collection of circles. Our Khovanov-Lipshitz-Sarkar stable homotopy type and our Steenrod square of links in thickened surfaces with genus$>1$ are stronger than the homotopical Khovanov homology of links in thickened surfaces with genus$>1$. It is the first meaningful Khovanov-Lipshitz-Sarkar stable homotopy type of links in 3-manifolds other than the 3-sphere. We point out that our theory has a different feature in the torus case.



قيم البحث

اقرأ أيضاً

For each link L in S^3 and every quantum grading j, we construct a stable homotopy type X^j_o(L) whose cohomology recovers Ozsvath-Rasmussen-Szabos odd Khovanov homology, H_i(X^j_o(L)) = Kh^{i,j}_o(L), following a construction of Lawson-Lipshitz-Sark ar of the even Khovanov stable homotopy type. Furthermore, the odd Khovanov homotopy type carries a Z/2 action whose fixed point set is a desuspension of the even Khovanov homotopy type. We also construct a Z/2 action on an even Khovanov homotopy type, with fixed point set a desuspension of X^j_o(L).
Menasco proved that nontrivial links in the 3-sphere with connected prime alternating non-2-braid projections are hyperbolic. This was further extended to augmented alternating links wherein non-isotopic trivial components bounding disks punctured tw ice by the alternating link were added. Lackenby proved that the first and second collections of links together form a closed subset of the set of all finite volume hyperbolic 3-manifolds in the geometric topology. Adams showed hyperbolicity for generalized augmented alternating links, which include additional trivial components that bound n-punctured disks for $n geq 2$. Here we prove that generalized augmented cellular alternating links in I-bundles over closed surfaces are also hyperbolic and that in $S times I$, the cellular alternating links and the augmented cellular alternating together form a closed subset of finite volume hyperbolic 3-manifolds in the geometric topology. Explicit examples of additional links in $S times I$ to which these results apply are included.
In this paper, we give a new construction of a Khovanov homotopy type. We show that this construction gives a space stably homotopy equivalent to the Khovanov homotopy types constructed in [LS14a] and [HKK] and, as a corollary, that those two constru ctions give equivalent spaces. We show that the construction behaves well with respect to disjoint unions, connected sums and mirrors, verifying several conjectures from [LS14a]. Finally, combining these results with computations from [LS14c] and the refined s-invariant from [LS14b] we obtain new results about the slice genera of certain knots.
In this note, we construct a chord index homomorphism from a subgroup of $H_1(Sigma, mathbb{Z})$ to the group of chord indices of a knot $K$ in $Sigmatimes I$. Some knot invariants derived from this homomorphism are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا