ترغب بنشر مسار تعليمي؟ اضغط هنا

DH3D: Deep Hierarchical 3D Descriptors for Robust Large-Scale 6DoF Relocalization

93   0   0.0 ( 0 )
 نشر من قبل Rui Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For relocalization in large-scale point clouds, we propose the first approach that unifies global place recognition and local 6DoF pose refinement. To this end, we design a Siamese network that jointly learns 3D local feature detection and description directly from raw 3D points. It integrates FlexConv and Squeeze-and-Excitation (SE) to assure that the learned local descriptor captures multi-level geometric information and channel-wise relations. For detecting 3D keypoints we predict the discriminativeness of the local descriptors in an unsupervised manner. We generate the global descriptor by directly aggregating the learned local descriptors with an effective attention mechanism. In this way, local and global 3D descriptors are inferred in one single forward pass. Experiments on various benchmarks demonstrate that our method achieves competitive results for both global point cloud retrieval and local point cloud registration in comparison to state-of-the-art approaches. To validate the generalizability and robustness of our 3D keypoints, we demonstrate that our method also performs favorably without fine-tuning on the registration of point clouds that were generated by a visual SLAM system. Code and related materials are available at https://vision.in.tum.de/research/vslam/dh3d.



قيم البحث

اقرأ أيضاً

In this paper, we introduce a method for visual relocalization using the geometric information from a 3D surfel map. A visual database is first built by global indices from the 3D surfel map rendering, which provides associations between image points and 3D surfels. Surfel reprojection constraints are utilized to optimize the keyframe poses and map points in the visual database. A hierarchical camera relocalization algorithm then utilizes the visual database to estimate 6-DoF camera poses. Learned descriptors are further used to improve the performance in challenging cases. We present evaluation under real-world conditions and simulation to show the effectiveness and efficiency of our method, and make the final camera poses consistently well aligned with the 3D environment.
74 - Qing Li , Jiasong Zhu , Rui Cao 2019
6DOF camera relocalization is an important component of autonomous driving and navigation. Deep learning has recently emerged as a promising technique to tackle this problem. In this paper, we present a novel relative geometry-aware Siamese neural ne twork to enhance the performance of deep learning-based methods through explicitly exploiting the relative geometry constraints between images. We perform multi-task learning and predict the absolute and relative poses simultaneously. We regularize the shared-weight twin networks in both the pose and feature domains to ensure that the estimated poses are globally as well as locally correct. We employ metric learning and design a novel adaptive metric distance loss to learn a feature that is capable of distinguishing poses of visually similar images from different locations. We evaluate the proposed method on public indoor and outdoor benchmarks and the experimental results demonstrate that our method can significantly improve localization performance. Furthermore, extensive ablation evaluations are conducted to demonstrate the effectiveness of different terms of the loss function.
Many robotics applications require precise pose estimates despite operating in large and changing environments. This can be addressed by visual localization, using a pre-computed 3D model of the surroundings. The pose estimation then amounts to findi ng correspondences between 2D keypoints in a query image and 3D points in the model using local descriptors. However, computational power is often limited on robotic platforms, making this task challenging in large-scale environments. Binary feature descriptors significantly speed up this 2D-3D matching, and have become popular in the robotics community, but also strongly impair the robustness to perceptual aliasing and changes in viewpoint, illumination and scene structure. In this work, we propose to leverage recent advances in deep learning to perform an efficient hierarchical localization. We first localize at the map level using learned image-wide global descriptors, and subsequently estimate a precise pose from 2D-3D matches computed in the candidate places only. This restricts the local search and thus allows to efficiently exploit powerful non-binary descriptors usually dismissed on resource-constrained devices. Our approach results in state-of-the-art localization performance while running in real-time on a popular mobile platform, enabling new prospects for robotics research.
148 - Peng Yin , Lingyun Xu , Jianmin Ji 2021
One of the main obstacles to 3D semantic segmentation is the significant amount of endeavor required to generate expensive point-wise annotations for fully supervised training. To alleviate manual efforts, we propose GIDSeg, a novel approach that can simultaneously learn segmentation from sparse annotations via reasoning global-regional structures and individual-vicinal properties. GIDSeg depicts global- and individual- relation via a dynamic edge convolution network coupled with a kernelized identity descriptor. The ensemble effects are obtained by endowing a fine-grained receptive field to a low-resolution voxelized map. In our GIDSeg, an adversarial learning module is also designed to further enhance the conditional constraint of identity descriptors within the joint feature distribution. Despite the apparent simplicity, our proposed approach achieves superior performance over state-of-the-art for inferencing 3D dense segmentation with only sparse annotations. Particularly, with $5%$ annotations of raw data, GIDSeg outperforms other 3D segmentation methods.
Robust and accurate visual localization is a fundamental capability for numerous applications, such as autonomous driving, mobile robotics, or augmented reality. It remains, however, a challenging task, particularly for large-scale environments and i n presence of significant appearance changes. State-of-the-art methods not only struggle with such scenarios, but are often too resource intensive for certain real-time applications. In this paper we propose HF-Net, a hierarchical localization approach based on a monolithic CNN that simultaneously predicts local features and global descriptors for accurate 6-DoF localization. We exploit the coarse-to-fine localization paradigm: we first perform a global retrieval to obtain location hypotheses and only later match local features within those candidate places. This hierarchical approach incurs significant runtime savings and makes our system suitable for real-time operation. By leveraging learned descriptors, our method achieves remarkable localization robustness across large variations of appearance and sets a new state-of-the-art on two challenging benchmarks for large-scale localization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا