ﻻ يوجد ملخص باللغة العربية
Goldstone Apple Valley Radio Telescope (GAVRT) is a science education partnership among NASA, the Jet Propulsion Laboratory (JPL), and the Lewis Center for Educational Research (LCER), offering unique opportunities for K -12 students and their teachers. As part of a long-term Jupiter synchrotron radiation (JSR) flux density monitoring program, LCER has been carrying out Jupiter observations with some student participation. In this paper we present the results of processed data sets observed between March 6, 2015 and April 6 2018. The data are divided into 5 epochs, grouped by time. We derive JSR beaming curves at different epochs and Earth declinations. We present a comparison of the observed beaming curves with those derived from most recent models for the radiation belts. Our results show an increasing trend of the JSR flux density which seem consistent with the models for the magnetospheric solar wind interactions.
In 2016, the NASA Juno spacecraft will initiate its one-year mission around Jupiter and become the first probe to explore the polar regions of Jupiter. The HST UV instruments (STIS and ACS) can greatly contribute to the success of the Juno mission by
Goldstone Apple Valley Radio Telescope (GAVRT) is a science education partnership among NASA, the Jet Propulsion Laboratory (JPL), and the Lewis Center for Educational Research (LCER), offering unique opportunities for K -12 students and their teache
The UVS instrument on the Juno mission recorded transient bright emission from a point source in Jupiters atmosphere. The spectrum shows that the emission is consistent with a 9600-K blackbody located 225 km above the 1-bar level and the duration of
The Parkes telescope has been monitoring 286 radio pulsars approximately monthly since 2007 at an observing frequency of 1.4 GHz. The wide dispersion measure (DM) range of the pulsar sample and the uniformity of the observing procedure make the data-
We report the discovery of two hot Jupiters using photometry from Campaigns 4 and 5 of the two-wheeled Kepler (K2) mission. K2-30b has a mass of $ 0.65 pm 0.14 M_J$, a radius of $1.070 pm 0.018 R_J$ and transits its G dwarf ($T_{eff} = 5675 pm 50$ K)