ﻻ يوجد ملخص باللغة العربية
Depth information has proven to be a useful cue in the semantic segmentation of RGB-D images for providing a geometric counterpart to the RGB representation. Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion to obtain better feature representations to achieve more accurate segmentation. This, however, may not lead to satisfactory results as actual depth data are generally noisy, which might worsen the accuracy as the networks go deeper. In this paper, we propose a unified and efficient Cross-modality Guided Encoder to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively. The key of the proposed architecture is a novel Separation-and-Aggregation Gating operation that jointly filters and recalibrates both representations before cross-modality aggregation. Meanwhile, a Bi-direction Multi-step Propagation strategy is introduced, on the one hand, to help to propagate and fuse information between the two modalities, and on the other hand, to preserve their specificity along the long-term propagation process. Besides, our proposed encoder can be easily injected into the previous encoder-decoder structures to boost their performance on RGB-D semantic segmentation. Our model outperforms state-of-the-arts consistently on both in-door and out-door challenging datasets. Code of this work is available at https://charlescxk.github.io/
Depth information matters in RGB-D semantic segmentation task for providing additional geometric information to color images. Most existing methods exploit a multi-stage fusion strategy to propagate depth feature to the RGB branch. However, at the ve
Scene depth information can help visual information for more accurate semantic segmentation. However, how to effectively integrate multi-modality information into representative features is still an open problem. Most of the existing work uses DCNNs
We present an effective method to progressively integrate and refine the cross-modality complementarities for RGB-D salient object detection (SOD). The proposed network mainly solves two challenging issues: 1) how to effectively integrate the complem
Exploiting multi-scale features has shown great potential in tackling semantic segmentation problems. The aggregation is commonly done with sum or concatenation (concat) followed by convolutional (conv) layers. However, it fully passes down the high-
Instance segmentation in point clouds is one of the most fine-grained ways to understand the 3D scene. Due to its close relationship to semantic segmentation, many works approach these two tasks simultaneously and leverage the benefits of multi-task