ﻻ يوجد ملخص باللغة العربية
We show that the canonical seesaw mechanism implemented by the $U(1)_{B-L}$ gauge symmetry provides two-component dark matter naturally. The seesaw scale that breaks $B-L$ defines a residual gauge symmetry to be $Z_6=Z_2otimes Z_3$, where $Z_2$ leads to the usual matter parity, while $Z_3$ is newly recognized, transforming quark fields nontrivially. The dark matter components -- that transform nontrivially under the matter parity and $Z_3$, respectively -- can gain arbitrary masses, despite the fact that the $Z_3$ dark matter may be heavier than the light quarks $u,d$. This dark matter setup can address the XENON1T anomaly recently observed and other observables, given that the dark matter masses are nearly degenerate, heavier than the electron and the $B-L$ gauge boson $Z$, as well as the fast-moving $Z_3$ dark matter has a large $B-L$ charge, while the $Z$ is viably below the beam dump experiment sensitive regime.
The singlet majoron model of seesaw neutrino mass is appended by one dark Majorana fermion singlet $chi$ with $L=2$ and one dark complex scalar singlet $zeta$ with $L=1$. This simple setup allows $chi$ to obtain a small radiative mass anchored by the
We study a $Z_2 times Z_2$ symmetric 3-Higgs Doublet Model (3HDM), wherein two of the doublets are inert and one is active (thus denoted in literature as I(2+1)HDM), yielding a two-component Dark Matter (DM) sector. The two DM candidates emerge as th
We discuss the possibility to find an upper bound on the seesaw scale using the cosmological bound on the cold dark matter relic density. We investigate a simple relation between the origin of neutrino masses and the properties of a dark matter candi
We propose a new and realistic 3-3-1 model with the minimal lepton and scalar contents, named the simple 3-3-1 model. The scalar sector contains two new heavy Higgs bosons, one neutral H and another singly-charged H^pm, besides the standard model Hig
We investigate whether right-handed neutrinos can play the role of the dark matter of the Universe and be generated by the freeze-out production mechanism. In the standard picture, the requirement of a long lifetime of the right-handed neutrinos impl