ترغب بنشر مسار تعليمي؟ اضغط هنا

Vertical CVD Growth of Highly Uniform Transition Metal Dichalcogenides

116   0   0.0 ( 0 )
 نشر من قبل Bilu Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted great attention due to their physical and chemical properties that make them promising in electronics and optoelectronics. Because of the difficulties in controlling concentrations of solid precursors and spatially non-uniform growth dynamics, it is challenging to grow wafer-scale 2D TMDCs with good uniformity and reproducibility so far, which significantly hinders their practical use. Here we report a vertical chemical vapor deposition (VCVD) design to grow monolayer TMDCs with a uniform density and high quality over the whole wafer, and with excellent reproducibility. The use of such VCVD design can easily control the three key growth parameters of precursor concentration, gas flow and temperature, which cannot be done in currently widely-used horizontal CVD system. Statistical results show that VCVD-grown monolayer TMDCs including MoS2 and WS2 are of high uniformity and quality on substrates over centimeter size. We also fabricated multiple van der Waals heterostructures by the one-step transfer of VCVD-grown TMDC samples, owning to its good uniformity. This work opens a way to grow 2D materials with high uniformity and reproducibility on the wafer scale, which can be used for the scalable fabrication of 2D materials and their heterostructures.



قيم البحث

اقرأ أيضاً

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted much interest and shown promise in many applications. However, it is challenging to obtain uniform TMDCs with clean surfaces, because of the difficulties in controlling the way the reactants are supplied to the reaction in the current chemical vapor deposition (CVD) growth process. Here, we report a new growth approach called dissolution-precipitation (DP) growth, where the metal sources are sealed inside glass substrates to control their feeding to the reaction. Noteworthy, the diffusion of metal source inside glass to its surface provides a uniform metal source on the glass surface, and restricts the TMDC growth to only a surface reaction while eliminates unwanted gas-phase reaction. This feature gives rise to highly-uniform monolayer TMDCs with a clean surface on centimeter-scale substrates. The DP growth works well for a large variety of TMDCs and their alloys, providing a solid foundation for the controlled growth of clean TMDCs by the fine control of the metal source.
A procedure to achieve the density-controlled growth of gold-catalyzed InP nanowires (NWs) on (111) silicon substrates using the vapor-liquid-solid method by molecular beam epitaxy is reported. We develop an effective and mask-free method based on co ntrolling the number and the size of the Au-In catalyst droplets in addition to the conditions for the NW nucleation. We show that the NW density can be tuned with values in the range of 18 {mu}m-2 to < 0.1 {mu}m-2 by the suitable choice of the In/Au catalyst beam equivalent pressure (BEP) ratio, by the phosphorous BEP and the growth temperature. The same degree of control is transferred to InAs/InP quantum dot-nanowires, taking advantage of the ultra-low density to study by micro-photoluminescence the optical properties of a single quantum dot-nanowires emitting in the telecom band monolithically grown on silicon. Optical spectroscopy at cryogenic temperature successfully confirmed the relevance of our method to excite single InAs quantum dots on the as-grown sample, which opens the path for large-scale applications based on single quantum dot-nanowire devices integrated on silicon.
115 - Tzu-Chi Hsieh , Mei-Yin Chou , 2018
This work investigates the feasibility of electrical valley filtering for holes in transition metal dichalcogenides. We look specifically into the scheme that utilizes a potential barrier to produce valley-dependent tunneling rates, and perform the s tudy with both a k.p based analytic method and a recursive Greens function based numerical method. The study yields the transmission coefficient as a function of incident energy and transverse wave vector, for holes going through lateral quantum barriers oriented in either armchair or zigzag directions, in both homogeneous and heterogeneous systems. The main findings are the following: 1) the tunneling current valley polarization increases with increasing barrier width or height, 2) both the valley-orbit interaction and band structure warping contribute to valley-dependent tunneling, with the former contribution being manifest in structures with asymmetric potential barriers, and the latter being orientation-dependent and reaching maximum for transmission in the armchair direction, and 3) for transmission ~ 0.1, a tunneling current valley polarization of the order of 10% can be achieved.
Cooperative effects allow for fascinating characteristics in light-matter interacting systems. Here, we study naturally occurring superradiant coupling in a class of quasi-two-dimensional, layered semiconductor systems. We perform optical absorption experiments of the lowest exciton for transition-metal dichalcogenides with different numbers of atomic layers. We examine two representative materials, MoSe$_2$ and WSe$_2$, using incoherent broadband white light. The measured transmission at the A exciton resonance does not saturate for optically thick samples consisting of hundreds of atomic layers, and the transmission varies nonmonotonously with the layer number. A self-consistent microscopic calculation reproduces the experimental observations, clearly identifying superradiant coupling effects as the origin of this unexpected behavior.
Recently, signatures of nonlinear Hall effects induced by Berry-curvature dipoles have been found in atomically thin 1T/Td-WTe$_2$. In this work, we show that in strained polar transition-metal dichalcogenides(TMDs) with 2H-structures, Berry-curvatur e dipoles created by spin degrees of freedom lead to strong nonlinear Hall effects. Under an easily accessible uniaxial strain of order 0.2%, strong nonlinear Hall signals, characterized by a Berry-curvature dipole on the order of 1{AA}, arise in electron-doped polar TMDs such as MoSSe, and this is easily detectable experimentally. Moreover, the magnitude and sign of the nonlinear Hall current can be easily tuned by electric gating and strain. These properties can be used to distinguish nonlinear Hall effects from classical mechanisms such as ratchet effects. Importantly, our system provides a potential scheme for building electrically switchable energy-harvesting rectifiers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا