ﻻ يوجد ملخص باللغة العربية
Existing methods of level generation using latent variable models such as VAEs and GANs do so in segments and produce the final level by stitching these separately generated segments together. In this paper, we build on these methods by training VAEs to learn a sequential model of segment generation such that generated segments logically follow from prior segments. By further combining the VAE with a classifier that determines whether to place the generated segment to the top, bottom, left or right of the previous segment, we obtain a pipeline that enables the generation of arbitrarily long levels that progress in any of these four directions and are composed of segments that logically follow one another. In addition to generating more coherent levels of non-fixed length, this method also enables implicit blending of levels from separate games that do not have similar orientation. We demonstrate our approach using levels from Super Mario Bros., Kid Icarus and Mega Man, showing that our method produces levels that are more coherent than previous latent variable-based approaches and are capable of blending levels across games.
Previous work explored blending levels from existing games to create levels for a new game that mixes properties of the original games. In this paper, we use Variational Autoencoders (VAEs) for improving upon such techniques. VAEs are artificial neur
Procedural content generation via machine learning (PCGML) has demonstrated its usefulness as a content and game creation approach, and has been shown to be able to support human creativity. An important facet of creativity is combinational creativit
Variational autoencoders (VAEs) have been used in prior works for generating and blending levels from different games. To add controllability to these models, conditional VAEs (CVAEs) were recently shown capable of generating output that can be modif
Prior research has shown variational autoencoders (VAEs) to be useful for generating and blending game levels by learning latent representations of existing level data. We build on such models by exploring the level design affordances and application
A standard Variational Autoencoder, with a Euclidean latent space, is structurally incapable of capturing topological properties of certain datasets. To remove topological obstructions, we introduce Diffusion Variational Autoencoders with arbitrary m