ﻻ يوجد ملخص باللغة العربية
Multi-modal neural machine translation (NMT) aims to translate source sentences into a target language paired with images. However, dominant multi-modal NMT models do not fully exploit fine-grained semantic correspondences between semantic units of different modalities, which have potential to refine multi-modal representation learning. To deal with this issue, in this paper, we propose a novel graph-based multi-modal fusion encoder for NMT. Specifically, we first represent the input sentence and image using a unified multi-modal graph, which captures various semantic relationships between multi-modal semantic units (words and visual objects). We then stack multiple graph-based multi-modal fusion layers that iteratively perform semantic interactions to learn node representations. Finally, these representations provide an attention-based context vector for the decoder. We evaluate our proposed encoder on the Multi30K datasets. Experimental results and in-depth analysis show the superiority of our multi-modal NMT model.
Attention-based Encoder-Decoder has the effective architecture for neural machine translation (NMT), which typically relies on recurrent neural networks (RNN) to build the blocks that will be lately called by attentive reader during the decoding proc
Neural machine translation (NMT) takes deterministic sequences for source representations. However, either word-level or subword-level segmentations have multiple choices to split a source sequence with different word segmentors or different subword
The prevalent approach to neural machine translation relies on bi-directional LSTMs to encode the source sentence. In this paper we present a faster and simpler architecture based on a succession of convolutional layers. This allows to encode the ent
Multi-modal machine translation (MMT) improves translation quality by introducing visual information. However, the existing MMT model ignores the problem that the image will bring information irrelevant to the text, causing much noise to the model an
Previous works have shown that contextual information can improve the performance of neural machine translation (NMT). However, most existing document-level NMT methods only consider a few number of previous sentences. How to make use of the whole do