ترغب بنشر مسار تعليمي؟ اضغط هنا

EZLDA: Efficient and Scalable LDA on GPUs

68   0   0.0 ( 0 )
 نشر من قبل Shilong Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Shilong Wang




اسأل ChatGPT حول البحث

LDA is a statistical approach for topic modeling with a wide range of applications. However, there exist very few attempts to accelerate LDA on GPUs which come with exceptional computing and memory throughput capabilities. To this end, we introduce EZLDA which achieves efficient and scalable LDA training on GPUs with the following three contributions: First, EZLDA introduces three-branch sampling method which takes advantage of the convergence heterogeneity of various tokens to reduce the redundant sampling task. Second, to enable sparsity-aware format for both D and W on GPUs with fast sampling and updating, we introduce hybrid format for W along with corresponding token partition to T and inverted index designs. Third, we design a hierarchical workload balancing solution to address the extremely skewed workload imbalance problem on GPU and scaleEZLDA across multiple GPUs. Taken together, EZLDA achieves superior performance over the state-of-the-art attempts with lower memory consumption.



قيم البحث

اقرأ أيضاً

Decomposing matrix A into a lower matrix L and an upper matrix U, which is also known as LU decomposition, is an essential operation in numerical linear algebra. For a sparse matrix, LU decomposition often introduces more nonzero entries in the L and U factors than in the original matrix. A symbolic factorization step is needed to identify the nonzero structures of L and U matrices. Attracted by the enormous potentials of the Graphics Processing Units (GPUs), an array of efforts have surged to deploy various LU factorization steps except for the symbolic factorization, to the best of our knowledge, on GPUs. This paper introduces gSoFa, the first GPU-based Symbolic factorization design with the following three optimizations to enable scalable LU symbolic factorization for nonsymmetric pattern sparse matrices on GPUs. First, we introduce a novel fine-grained parallel symbolic factorization algorithm that is well suited for the Single Instruction Multiple Thread (SIMT) architecture of GPUs. Second, we tailor supernode detection into a SIMT friendly process and strive to balance the workload, minimize the communication and saturate the GPU computing resources during supernode detection. Third, we introduce a three-pronged optimization to reduce the excessive space consumption problem faced by multi-source concurrent symbolic factorization. Taken together, gSoFa achieves up to 31x speedup from 1 to 44 Summit nodes (6 to 264 GPUs) and outperforms the state-of-the-art CPU project, on average, by 5x. Notably, gSoFa also achieves {up to 47%} of the peak memory throughput of a V100 GPU in Summit.
Rapid growth in scientific data and a widening gap between computational speed and I/O bandwidth makes it increasingly infeasible to store and share all data produced by scientific simulations. Instead, we need methods for reducing data volumes: idea lly, methods that can scale data volumes adaptively so as to enable negotiation of performance and fidelity tradeoffs in different situations. Multigrid-based hierarchical data representations hold promise as a solution to this problem, allowing for flexible conversion between different fidelities so that, for example, data can be created at high fidelity and then transferred or stored at lower fidelity via logically simple and mathematically sound operations. However, the effective use of such representations has been hindered until now by the relatively high costs of creating, accessing, reducing, and otherwise operating on such representations. We describe here highly optimized data refactoring kernels for GPU accelerators that enable efficient creation and manipulation of data in multigrid-based hierarchical forms. We demonstrate that our optimized design can achieve up to 264 TB/s aggregated data refactoring throughput -- 92% of theoretical peak -- on 1024 nodes of the Summit supercomputer. We showcase our optimized design by applying it to a large-scale scientific visualization workflow and the MGARD lossy compression software.
179 - Yuke Wang , Boyuan Feng , Gushu Li 2020
As the emerging trend of graph-based deep learning, Graph Neural Networks (GNNs) excel for their capability to generate high-quality node feature vectors (embeddings). However, the existing one-size-fits-all GNN implementations are insufficient to ca tch up with the evolving GNN architectures, the ever-increasing graph sizes, and the diverse node embedding dimensionalities. To this end, we propose textbf{GNNAdvisor}, an adaptive and efficient runtime system to accelerate various GNN workloads on GPU platforms. First, GNNAdvisor explores and identifies several performance-relevant features from both the GNN model and the input graph, and uses them as a new driving force for GNN acceleration. Second, GNNAdvisor implements a novel and highly-efficient 2D workload management, tailored for GNN computation to improve GPU utilization and performance under different application settings. Third, GNNAdvisor capitalizes on the GPU memory hierarchy for acceleration by gracefully coordinating the execution of GNNs according to the characteristics of the GPU memory structure and GNN workloads. Furthermore, to enable automatic runtime optimization, GNNAdvisor incorporates a lightweight analytical model for an effective design parameter search. Extensive experiments show that GNNAdvisor outperforms the state-of-the-art GNN computing frameworks, such as Deep Graph Library ($3.02times$ faster on average) and NeuGraph (up to $4.10times$ faster), on mainstream GNN architectures across various datasets.
Maximizing the performance potential of the modern day GPU architecture requires judicious utilization of available parallel resources. Although dramatic reductions can often be obtained through straightforward mappings, further performance improveme nts often require algorithmic redesigns to more closely exploit the target architecture. In this paper, we focus on efficient molecular simulations for the GPU and propose a novel cell list algorithm that better utilizes its parallel resources. Our goal is an efficient GPU implementation of large-scale Monte Carlo simulations for the grand canonical ensemble. This is a particularly challenging application because there is inherently less computation and parallelism than in similar applications with molecular dynamics. Consistent with the results of prior researchers, our simulation results show traditional cell list implementations for Monte Carlo simulations of molecular systems offer effectively no performance improvement for small systems [5, 14], even when porting to the GPU. However for larger systems, the cell list implementation offers significant gains in performance. Furthermore, our novel cell list approach results in better performance for all problem sizes when compared with other GPU implementations with or without cell lists.
Despite many years of research into latent Dirichlet allocation (LDA), applying LDA to collections of non-categorical items is still challenging. Yet many problems with much richer data share a similar structure and could benefit from the vast litera ture on LDA. We propose logistic LDA, a novel discriminative variant of latent Dirichlet allocation which is easy to apply to arbitrary inputs. In particular, our model can easily be applied to groups of images, arbitrary text embeddings, and integrates well with deep neural networks. Although it is a discriminative model, we show that logistic LDA can learn from unlabeled data in an unsupervised manner by exploiting the group structure present in the data. In contrast to other recent topic models designed to handle arbitrary inputs, our model does not sacrifice the interpretability and principled motivation of LDA.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا