ترغب بنشر مسار تعليمي؟ اضغط هنا

Implicit Mesh Reconstruction from Unannotated Image Collections

80   0   0.0 ( 0 )
 نشر من قبل Shubham Tulsiani
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an approach to infer the 3D shape, texture, and camera pose for an object from a single RGB image, using only category-level image collections with foreground masks as supervision. We represent the shape as an image-conditioned implicit function that transforms the surface of a sphere to that of the predicted mesh, while additionally predicting the corresponding texture. To derive supervisory signal for learning, we enforce that: a) our predictions when rendered should explain the available image evidence, and b) the inferred 3D structure should be geometrically consistent with learned pixel to surface mappings. We empirically show that our approach improves over prior work that leverages similar supervision, and in fact performs competitively to methods that use stronger supervision. Finally, as our method enables learning with limited supervision, we qualitatively demonstrate its applicability over a set of about 30 object categories.



قيم البحث

اقرأ أيضاً

We present a new end-to-end learning framework to obtain detailed and spatially coherent reconstructions of multiple people from a single image. Existing multi-person methods suffer from two main drawbacks: they are often model-based and therefore ca nnot capture accurate 3D models of people with loose clothing and hair; or they require manual intervention to resolve occlusions or interactions. Our method addresses both limitations by introducing the first end-to-end learning approach to perform model-free implicit reconstruction for realistic 3D capture of multiple clothed people in arbitrary poses (with occlusions) from a single image. Our network simultaneously estimates the 3D geometry of each person and their 6DOF spatial locations, to obtain a coherent multi-human reconstruction. In addition, we introduce a new synthetic dataset that depicts images with a varying number of inter-occluded humans and a variety of clothing and hair styles. We demonstrate robust, high-resolution reconstructions on images of multiple humans with complex occlusions, loose clothing and a large variety of poses and scenes. Our quantitative evaluation on both synthetic and real-world datasets demonstrates state-of-the-art performance with significant improvements in the accuracy and completeness of the reconstructions over competing approaches.
Reasoning 3D shapes from 2D images is an essential yet challenging task, especially when only single-view images are at our disposal. While an object can have a complicated shape, individual parts are usually close to geometric primitives and thus ar e easier to model. Furthermore, parts provide a mid-level representation that is robust to appearance variations across objects in a particular category. In this work, we tackle the problem of 3D part discovery from only 2D image collections. Instead of relying on manually annotated parts for supervision, we propose a self-supervised approach, latent part discovery (LPD). Our key insight is to learn a novel part shape prior that allows each part to fit an object shape faithfully while constrained to have simple geometry. Extensive experiments on the synthetic ShapeNet, PartNet, and real-world Pascal 3D+ datasets show that our method discovers consistent object parts and achieves favorable reconstruction accuracy compared to the existing methods with the same level of supervision.
Decomposing a scene into its shape, reflectance, and illumination is a challenging but important problem in computer vision and graphics. This problem is inherently more challenging when the illumination is not a single light source under laboratory conditions but is instead an unconstrained environmental illumination. Though recent work has shown that implicit representations can be used to model the radiance field of an object, most of these techniques only enable view synthesis and not relighting. Additionally, evaluating these radiance fields is resource and time-intensive. We propose a neural reflectance decomposition (NeRD) technique that uses physically-based rendering to decompose the scene into spatially varying BRDF material properties. In contrast to existing techniques, our input images can be captured under different illumination conditions. In addition, we also propose techniques to convert the learned reflectance volume into a relightable textured mesh enabling fast real-time rendering with novel illuminations. We demonstrate the potential of the proposed approach with experiments on both synthetic and real datasets, where we are able to obtain high-quality relightable 3D assets from image collections. The datasets and code is available on the project page: https://markboss.me/publication/2021-nerd/
125 - Zerong Zheng , Tao Yu , Yebin Liu 2020
Modeling 3D humans accurately and robustly from a single image is very challenging, and the key for such an ill-posed problem is the 3D representation of the human models. To overcome the limitations of regular 3D representations, we propose Parametr ic Model-Conditioned Implicit Representation (PaMIR), which combines the parametric body model with the free-form deep implicit function. In our PaMIR-based reconstruction framework, a novel deep neural network is proposed to regularize the free-form deep implicit function using the semantic features of the parametric model, which improves the generalization ability under the scenarios of challenging poses and various clothing topologies. Moreover, a novel depth-ambiguity-aware training loss is further integrated to resolve depth ambiguities and enable successful surface detail reconstruction with imperfect body reference. Finally, we propose a body reference optimization method to improve the parametric model estimation accuracy and to enhance the consistency between the parametric model and the implicit function. With the PaMIR representation, our framework can be easily extended to multi-image input scenarios without the need of multi-camera calibration and pose synchronization. Experimental results demonstrate that our method achieves state-of-the-art performance for image-based 3D human reconstruction in the cases of challenging poses and clothing types.
Estimating a mesh from an unordered set of sparse, noisy 3D points is a challenging problem that requires carefully selected priors. Existing hand-crafted priors, such as smoothness regularizers, impose an undesirable trade-off between attenuating no ise and preserving local detail. Recent deep-learning approaches produce impressive results by learning priors directly from the data. However, the priors are learned at the object level, which makes these algorithms class-specific and even sensitive to the pose of the object. We introduce meshlets, small patches of mesh that we use to learn local shape priors. Meshlets act as a dictionary of local features and thus allow to use learned priors to reconstruct object meshes in any pose and from unseen classes, even when the noise is large and the samples sparse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا