ﻻ يوجد ملخص باللغة العربية
Supersymmetric models with Dirac instead of Majorana gaugino masses have distinct phenomenological consequences. In this paper, we investigate the electroweakino sector of the Minimal Dirac Gaugino Supersymmetric Standard Model (MDGSSM) with regards to dark matter (DM) and collider constraints. We delineate the parameter space where the lightest neutralino of the MDGSSM is a viable DM candidate, that makes for at least part of the observed relic abundance while evading constraints from DM direct detection, LEP and lowenergy data, and LHC Higgs measurements. The collider phenomenology of the thus emerging scenarios is characterised by the richer electroweakino spectrum as compared to the Minimal Supersymmetric Standard Model (MSSM) -- 6 neutralinos and 3 charginos instead of 4 and 2 in the MSSM, naturally small mass splittings, and the frequent presence of long-lived particles, both charginos and/or neutralinos. Reinterpreting ATLAS and CMS analyses with the help of SModelS and MadAnalysis 5, we discuss the sensitivity of existing LHC searches for new physics to these scenarios and show which cases can be constrained and which escape detection. Finally, we propose a set of benchmark points which can be useful for further studies, designing dedicated experimental analyses and/or investigating the potential of future experiments.
Most SUSY searches at the LHC are optimised for the MSSM, where gauginos are Majorana particles. By introducing Dirac gauginos, we obtain an enriched phenomenology, from which considerable differences in the LHC signatures and limits are expected as
Direct production of electroweakly charged states may not produce the high energy jets or the significant missing energy required in many new physics searches at the LHC. However, because these states produce leptons, they are still potentially detec
In this work we study the collider phenomenology of color-octet scalars (sgluons) in supersymmetric models with Dirac gaugino masses that feature an explicitly broken $R$ symmetry ($R$-broken models). We construct such models by augmenting minimal $R
We present an extensive analysis of squark and gaugino hadroproduction and decays in non-minimal flavour violating supersymmetry. We employ the so-called super-CKM basis to define the possible misalignment of quark and squark rotations, and we use ge
We propose two new simple lepton flavor models in the framework of the $S_4$ flavor symmetry. The neutrino mass matrices, which are given by two complex parameters, lead to the inverted mass hierarchy. The charged lepton mass matrix has the 1-2 lepto