Possibilities of direct production of superheavy nuclei with Z=112--118 in different evaporation channels


الملخص بالإنكليزية

The production cross sections of heaviest isotopes of superheavy nuclei with charge numbers 112--118 are predicted in the $xn$--, $pxn$--, and $alpha xn$--evaporation channels of the $^{48}$Ca-induced complete fusion reactions for future experiments. The estimates of synthesis capabilities are based on a uniform and consistent set of input nuclear data. Nuclear masses, deformations, shell corrections, fission barriers, and decay energies are calculated within the macroscopic-microscopic approach for even-even, odd-Z, and odd-N nuclei. For odd systems, the blocking procedure is used. To find, the ground states via minimization and saddle points using Immersion Water flow technique, multidimensional deformation spaces, containing non-axially are used. As shown, current calculations based on a new set of mass and barriers, agree very well with experimentally known cross-sections, especially in the $3n$--evaporation channel. The dependencies of these predictions on the mass/fission barriers tables and fusion models are discussed. A way is shown to produce directly unknown superheavy isotopes in the $1n$-- or $2n$--evaporation channels. The synthesis of new superheavy isotopes unattainable in reactions with emission of neutrons is proposed in the promising channels with emission of protons ($sigma_{pxn} simeq 10-200$ fb) and alphas ($sigma_{alpha xn} simeq 5-500$ fb).

تحميل البحث