ﻻ يوجد ملخص باللغة العربية
Let $chi_k(G)$ denote the minimum number of colors needed to color the edges of a graph $G$ in a way that the subgraph spanned by the edges of each color has all degrees congruent to $1 pmod k$. Scott [{em Discrete Math. 175}, 1-3 (1997), 289--291] proved that $chi_k(G)leq5k^2log k$, and thus settled a question of Pyber [{em Sets, graphs and numbers} (1992), pp. 583--610], who had asked whether $chi_k(G)$ can be bounded solely as a function of $k$. We prove that $chi_k(G)=O(k)$, answering affirmatively a question of Scott.
A tree $T$ in an edge-colored graph is a emph{proper tree} if any two adjacent edges of $T$ are colored with different colors. Let $G$ be a graph of order $n$ and $k$ be a fixed integer with $2leq kleq n$. For a vertex set $Ssubseteq V(G)$, a tree co
A strong edge colouring of a graph is an assignment of colours to the edges of the graph such that for every colour, the set of edges that are given that colour form an induced matching in the graph. The strong chromatic index of a graph $G$, denoted
Let $G$ be a simple graph with maximum degree $Delta(G)$. A subgraph $H$ of $G$ is overfull if $|E(H)|>Delta(G)lfloor |V(H)|/2 rfloor$. Chetwynd and Hilton in 1985 conjectured that a graph $G$ on $n$ vertices with $Delta(G)>n/3$ has chromatic index $
The strong chromatic index of a graph $G$, denoted $chi_s(G)$, is the least number of colors needed to edge-color $G$ so that edges at distance at most two receive distinct colors. The strong list chromatic index, denoted $chi_{s,ell}(G)$, is the lea
A strong $k$-edge-coloring of a graph G is an edge-coloring with $k$ colors in which every color class is an induced matching. The strong chromatic index of $G$, denoted by $chi_{s}(G)$, is the minimum $k$ for which $G$ has a strong $k$-edge-coloring