ترغب بنشر مسار تعليمي؟ اضغط هنا

Bistabilities and domain walls in weakly open quantum systems

54   0   0.0 ( 0 )
 نشر من قبل A. Rosch
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Weakly pumped systems with approximate conservation laws can be efficiently described by a generalized Gibbs ensemble if the steady state of the system is unique. However, such a description can fail if there are multiple steady state solutions, for example, a bistability. In this case domains and domain walls may form. In one-dimensional (1D) systems any type of noise (thermal or non-thermal) will in general lead to a proliferation of such domains. We study this physics in a 1D spin chain with two approximate conservation laws, energy and the $z$-component of the total magnetization. A bistability in the magnetization is induced by the coupling to suitably chosen Lindblad operators. We analyze the theory for a weak coupling strength $epsilon$ to the non-equilibrium bath. In this limit, we argue that one can use hydrodynamic approximations which describe the system locally in terms of space- and time-dependent Lagrange parameters. Here noise terms enforce the creation of domains, where the typical width of a domain wall goes as $sim 1/sqrt{epsilon}$ while the density of domain walls is exponentially small in $1/sqrt{epsilon}$. This is shown by numerical simulations of a simplified hydrodynamic equation in the presence of noise.



قيم البحث

اقرأ أيضاً

We study thermalization in open quantum systems using the Lindblad formalism. A method that both thermalizes and couples to Lindblad operators only at edges of the system is introduced. Our method leads to a Gibbs state of the system, satisfies fluct uation-dissipation relations, and applies both to integrable and non-integrable systems. Possible applications of the method include the study of systems coupled locally to multiple reservoirs. Our analysis also highlights the limits of applicability of the Lindblad approach to study strongly driven systems.
We develop a fully microscopic, statistical mechanics approach to study phase transitions in Ising systems with competing interactions at different scales. Our aim is to consider orientational and positional order parameters in a unified framework. I n this work we consider two dimensional stripe forming systems, where nematic, smectic and crystal phases are possible. We introduce a nematic order parameter in a lattice, which measures orientational order of interfaces. We develop a mean field approach which leads to a free energy which is a function of both the magnetization (density) and the orientational (nematic) order parameters. Self-consistent equations for the order parameters are obtained and the solutions are described for a particular system, the Dipolar Frustrated Ising Ferromagnet. We show that this system has an Ising-nematic phase at low temperatures in the square lattice, where positional order (staggered magnetization) is zero. At lower temperatures a crystal-stripe phase may appear. In the continuum limit the present approach connects to a Ginsburg-Landau theory, which has an isotropic-nematic phase transition with breaking of a continuous symmetry.
212 - Charles Poli 2010
In this letter, we demonstrate that a non-Hermitian Random Matrix description can account for both spectral and spatial statistics of resonance states in a weakly open chaotic wave system with continuously distributed losses. More specifically, the s tatistics of resonance states in an open 2D chaotic microwave cavity are investigated by solving the Maxwell equations with lossy boundaries subject to Ohmic dissipation. We successfully compare the statistics of its complex-valued resonance states and associated widths with analytical predictions based on a non-Hermitian effective Hamiltonian model defined by a finite number of fictitious open channels.
In this work we investigate the late-time stationary states of open quantum systems coupled to a thermal reservoir in the strong coupling regime. In general such systems do not necessarily relax to a Boltzmann distribution if the coupling to the ther mal reservoir is non-vanishing or equivalently if the relaxation timescales are finite. Using a variety of non-equilibrium formalisms valid for non-Markovian processes, we show that starting from a product state of the closed system = system + environment, with the environment in its thermal state, the open system which results from coarse graining the environment will evolve towards an equilibrium state at late-times. This state can be expressed as the reduced state of the closed system thermal state at the temperature of the environment. For a linear (harmonic) system and environment, which is exactly solvable, we are able to show in a rigorous way that all multi-time correlations of the open system evolve towards those of the closed system thermal state. Multi-time correlations are especially relevant in the non-Markovian regime, since they cannot be generated by the dynamics of the single-time correlations. For more general systems, which cannot be exactly solved, we are able to provide a general proof that all single-time correlations of the open system evolve to those of the closed system thermal state, to first order in the relaxation rates. For the special case of a zero-temperature reservoir, we are able to explicitly construct the reduced closed system thermal state in terms of the environmental correlations.
We analyse dynamical large deviations of quantum trajectories in Markovian open quantum systems in their full generality. We derive a {em quantum level-2.5 large deviation principle} for these systems, which describes the joint fluctuations of time-a veraged quantum jump rates and of the time-averaged quantum state for long times. Like its level-2.5 counterpart for classical continuous-time Markov chains (which it contains as a special case) this description is both {em explicit and complete}, as the statistics of arbitrary time-extensive dynamical observables can be obtained by contraction from the explicit level-2.5 rate functional we derive. Our approach uses an unravelled representation of the quantum dynamics which allows these statistics to be obtained by analysing a classical stochastic process in the space of pure states. For quantum reset processes we show that the unravelled dynamics is semi-Markov, and derive bounds on the asymptotic variance of the number of quantum jumps which generalise classical thermodynamic uncertainty relations. We finish by discussing how our level-2.5 approach can be used to study large deviations of non-linear functions of the state such as measures of entanglement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا