ﻻ يوجد ملخص باللغة العربية
Off-state current leakage and switching delay has become the main challenge for continued complementary metal-oxide-semiconductor (CMOS) technology scaling. Previous work proposes a see-saw relay structure to mimic the operation of CMOS. This paper presents a novel single-pole double-throw (SPDT) switch structure based on AlN piezoelectric cantilever beam to improve the former see-saw relay structure. Geometry parameters are given and key switch parameters such as actuation voltage, switching time and contact force have been calculated and compared with previous see-saw relay structure. Analysis and design process is shown and micro-fabrication process is described as well.
We propose a nanostructure switch based on nuclear magnetic resonance (NMR) which offers reliable quantum gate operation, an essential ingredient for building a quantum computer. The nuclear resonance is controlled by the magic number transitions of
An innovative transformation electromagnetics (TE) paradigm, which leverages on the Schwarz-Christoffel (SC) theorem, is proposed to design effective and realistic field manipulation devices (FMDs). Thanks to the conformal property, such a TE design
In recent years, magnetic particle spectroscopy (MPS) has become a highly sensitive and versatile sensing technique for quantitative bioassays. It relies on the dynamic magnetic responses of magnetic nanoparticles (MNPs) for the detection of target a
The implementation of on-chip MEMS/NEMS transducers for arbitrary resonators is difficult due to a number of difficulties such as material choice, large dissipation, restriction in high frequency, low sensitivity, poor reliability, and poor integrabi
We report on the first beta gallium oxide (beta-Ga2O3) crystal feedback oscillator built by employing a vibrating beta-Ga2O3 nanoresonator as the frequency reference for real-time middle ultraviolet (MUV) light detection. We fabricate suspended beta-