ﻻ يوجد ملخص باللغة العربية
We discuss a grand unified theory (GUT) based on a $USp(32)$ GUT gauge group broken to its subgroups including a special subgroup. A GUT based on an $SO(32)$ GUT gauge group has been discussed on six-dimensional (6D) orbifold space $M^4times T^2/mathbb{Z}_2$. It is inspired by the $SO(32)$ string theory behind the $SU(16)$ GUT whose $SU(16)$ is broken to a special subgroup $SO(10)$. Alternative direction is to embed an $SU(16)$ gauge group into a $USp(32)$ GUT gauge group, which is inspired by a non-supersymmetric symplectic-type $USp(32)$ string theory. In a $USp(32)$ GUT, one generation of the SM fermions is embedded into a 6D bulk Weyl fermion in a $USp(32)$ defining representation. For a three generation model, all the 6D and 4D gauge anomalies in the bulk and on the fixed points are canceled out without exotic chiral fermions at low energies. The SM Higgs scalar is embedded into a 6D bulk scalar field in a $USp(32)$ adjoint representation.
Gauge-Higgs grand unification is formulated. By extending $SO(5) times U(1)_X$ gauge-Higgs electroweak unification, strong interactions are incorporated in $SO(11)$ gauge-Higgs unification in the Randall-Sundrum warped space. Quarks and leptons are c
It is shown how grand unification can occur in models which are partly supersymmetric. The particle states which are composite do not contribute to the running of gauge couplings above the compositeness scale, while the elementary states contribute t
$SO(11)$ gauge-Higgs grand unification is formulated in the six-dimensional hybrid warped space in which the fifth and sixth dimensions play as the electroweak and grand-unification dimensions. Fermions are introduced in ${bf 32}$, ${bf 11}$ and ${bf
To solve the doublet-triplet splitting problem in SU(5) grand unified theories, we propose a four dimensional orbifold grand unified theory by acting Z2 on the SU(5) gauge group. Without an adjoint Higgs, the orbifold procedure breaks the SU(5) gauge
4D Higgs field is identified with the extra-dimensional component of gauge potentials in the gauge-Higgs unification scenario. $SO(5) times U(1)$ gauge-Higgs EW unification in the Randall-Sundrum warped space is successful at low energies. The Higgs