ﻻ يوجد ملخص باللغة العربية
Tensor contractions are ubiquitous in computational chemistry and physics, where tensors generally represent states or operators and contractions express the algebra of these quantities. In this context, the states and operators often preserve physical conservation laws, which are manifested as group symmetries in the tensors. These group symmetries imply that each tensor has block sparsity and can be stored in a reduced form. For nontrivial contractions, the memory footprint and cost are lowered, respectively, by a linear and a quadratic factor in the number of symmetry sectors. State-of-the-art tensor contraction software libraries exploit this opportunity by iterating over blocks or using general block-sparse tensor representations. Both approaches entail overhead in performance and code complexity. With intuition aided by tensor diagrams, we present a technique, irreducible representation alignment, which enables efficient handling of Abelian group symmetries via only dense tensors, by using contraction-specific reduced forms. This technique yields a general algorithm for arbitrary group symmetric contractions, which we implement in Python and apply to a variety of representative contractions from quantum chemistry and tensor network methods. As a consequence of relying on only dense tensor contractions, we can easily make use of efficient batched matrix multiplication via Intels MKL and distributed tensor contraction via the Cyclops library, achieving good efficiency and parallel scalability on up to 4096 Knights Landing cores of a supercomputer.
Using the entropic inequalities for Shannon and Tsallis entropies new inequalities for some classical polynomials are obtained. To this end, an invertible mapping for the irreducible unitary representation of groups $SU(2)$ and $SU(1,1)$ like Jacoby
We have developed a Mathematica program package SpaceGroupIrep which is a database and tool set for irreducible representations (IRs) of space group in BC convention, i.e. the convention used in the famous book The mathematical theory of symmetry in
We provide a new tableau model from which one can easily deduce the characters of irreducible polynomial representations of the orthogonal group $mathrm{O}_n(mathbb{C})$. This model originates from representation theory of the $imath$quantum group of
Irreducible representations (IRs) of the double-covered octahedral group are used to construct lattice source and sink operators for three-quark baryons. The goal is to achieve a good coupling to higher spin states as well as ground states. Complete
This paper is concerned with integrals which integrands are the monomials of matrix elements of irreducible representations of classical groups. Based on analysis on Young tableaux, we discuss some related duality theorems and compute the asymptotics