ترغب بنشر مسار تعليمي؟ اضغط هنا

A high redshift population of galaxies at the North Ecliptic Pole: unveiling the main sequence of dusty galaxies

68   0   0.0 ( 0 )
 نشر من قبل Laia Barrufet
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dusty high-z galaxies are extreme objects with high star formation rates (SFRs) and luminosities. Characterising the properties of this population and analysing their evolution over cosmic time is key to understanding galaxy evolution in the early Universe. We select a sample of high-z dusty star-forming galaxies (DSFGs) and evaluate their position on the main sequence (MS) of star-forming galaxies, the well-known correlation between stellar mass and SFR. We aim to understand the causes of their high star formation and quantify the percentage of DSFGs that lie above the MS. We adopted a multi-wavelength approach with data from optical to submillimetre wavelengths from surveys at the North Ecliptic Pole (NEP) to study a submillimetre sample of high-redshift galaxies. Two submillimetre selection methods were used, including: sources selected at 850$mathrm{, mu m}$ with the Sub-millimetre Common-User Bolometer Array 2) SCUBA-2 instrument and {it Herschel}-Spectral and Photometric Imaging Receiver (SPIRE) selected sources (colour-colour diagrams and 500$mathrm{, mu m}$ risers), finding that 185 have good multi-wavelength coverage. The resulting sample of 185 high-z candidates was further studied by spectral energy distribution (SED) fitting with the CIGALE fitting code. We derived photometric redshifts, stellar masses, SFRs, and additional physical parameters, such as the infrared luminosity and active galactic nuclei (AGN) contribution. We find that the different results in the literature are, only in part, due to selection effects. The difference in measured SFRs affects the position of DSFGs on the MS of galaxies; most of the DSFGs lie on the MS (60%). Finally, we find that the star formation efficiency (SFE) depends on the epoch and intensity of the star formation burst in the galaxy; the later the burst, the more intense the star formation.



قيم البحث

اقرأ أيضاً

127 - H. Nayyeri , N. Ghotbi , A. Cooray 2017
We present a photometric catalog for Spitzer Space Telescope warm mission observations of the North Ecliptic Pole (NEP; centered at $rm R.A.=18^h00^m00^s$, $rm Decl.=66^d33^m38^s.552$). The observations are conducted with IRAC in 3.6 $mu$m and 4.5 $m u$m bands over an area of 7.04 deg$^2$ reaching 1$sigma$ depths of 1.29 $mu$Jy and 0.79 $mu$Jy in the 3.6 $mu$m and 4.5 $mu$m bands respectively. The photometric catalog contains 380,858 sources with 3.6 $mu$m and 4.5 $mu$m band photometry over the full-depth NEP mosaic. Point source completeness simulations show that the catalog is 80% complete down to 19.7 AB. The accompanying catalog can be utilized in constraining the physical properties of extra-galactic objects, studying the AGN population, measuring the infrared colors of stellar objects, and studying the extra-galactic infrared background light.
Ultra Steep Spectrum (USS) radio sources are one of the efficient tracers of High Redshift Radio Galaxies (HzRGs). To search for HzRGs candidates, we investigate properties of a large sample of faint USS sources derived from our deep 325 MHz GMRT obs ervations combined with 1.4 GHz VLA data on the two subfields (i.e., VLA-VIMOS VLT Deep Survey (VVDS) and Subaru X-ray Deep Field (SXDF)) in the XMM-LSS field. The available redshift estimates show that majority of our USS sample sources are at higher redshifts with the median redshifts ~ 1.18 and ~ 1.57 in the VLA-VVDS and SXDF fields. In the VLA-VVDS field, ~ 20% of USS sources lack the redshift estimates as well as the detection in the deep optical, IR surveys, and thus these sources may be considered as potential high-z candidates. The radio luminosity distributions suggest that a substantial fraction (~ 40%) of our USS sample sources are radio-loud sources, distributed over redshifts ~ 0.5 to 4.
A detailed analysis of Herschel-PACS observations at the North Ecliptic Pole is presented. High quality maps, covering an area of 0.44 square degrees, are produced and then used to derive potential candidate source lists. A rigorous quality control p ipeline has been used to create final legacy catalogues in the PACS Green 100 micron and Red 160 micron bands, containing 1384 and 630 sources respectively. These catalogues reach to more than twice the depth of the current archival Herschel/PACS Point Source Catalogue, detecting 400 and 270 more sources in the short and long wavelength bands respectively. Galaxy source counts are constructed that extend down to flux densities of 6mJy and 19mJy (50% completeness) in the Green 100 micron and Red 160 micron bands respectively. These source counts are consistent with previously published PACS number counts in other fields across the sky. The source counts are then compared with a galaxy evolution model identifying a population of luminous infrared galaxies as responsible for the bulk of the galaxy evolution over the flux range (5-100mJy) spanned by the observed counts, contributing approximate fractions of 50% and 60% to the cosmic infrared background (CIRB) at 100 microns and 160 microns respectively.
118 - K.Murata , H.Matsuhara , H.Inami 2014
We study the behaviour of polycyclic aromatic hydrocarbon emission in galaxies at z=0.3-1.4 using 1868 samples from the revised catalogue of AKARI North Ecliptic Pole Deep survey. The continuous filter coverage at 2-24um makes it possible to measure 8um luminosity, which is dominated by polycyclic aromatic hydrocarbon emission for galaxies at up to z=2. We compare the IR8 (= LIR/L(8)) and 8um to 4.5um luminosity ratio (L(8)/L(4.5)) with the starburstiness, Rsb, defined as excess of specific star -formation rate over that of main-sequence galaxy. All AGN candidates were excluded from our sample using an SED fitting. We found L(8)/L(4.5) increases with starburstiness at log Rsb < 0.5 and stays constant at higher starburstiness. On the other hand, IR8 is constant at log Rsb < 0, while it increases with starburstiness at log Rsb > 0. This behaviour is seen in all redshift range of our study. These results indicate that starburst galaxies have deficient polycyclic aromatic hydrocarbon emission compared with main-sequence galaxies. We also find that galaxies with extremely high L(8)/L(4.5) ratio have only moderate starburstiness. These results suggest that starburst galaxies have compact star-forming regions with intense radiation, which destroys PAHs and/or have dusty HII regions resulting in a lack of ionising photons.
We present the first results of an ALMA survey of the lower fine structure line of atomic carbon [C I]$(^3P_1,-,^{3}P_0)$ in far infrared-selected galaxies on the main sequence at $zsim1.2$ in the COSMOS field. We compare our sample with a comprehens ive compilation of data available in the literature for local and high-redshift starbursting systems and quasars. We show that the [C I]($^3P_1$$rightarrow$$^3P_0$) luminosity correlates on global scales with the infrared luminosity $L_{rm IR}$ similarly to low-$J$ CO transitions. We report a systematic variation of $L_{rm [C,I]^3P_1,-, ^3P_0}$/$L_{rm IR}$ as a function of the galaxy type, with the ratio being larger for main-sequence galaxies than for starbursts and sub-millimeter galaxies at fixed $L_{rm IR}$. The $L_{rm [C,I]^3P_1,-, ^3P_0}$/$L_{rm CO(2-1)}$ and $M_{rm{[C I]}}$/$M_{rm dust}$ mass ratios are similar for main-sequence galaxies and for local and high-redshift starbursts within a 0.2 dex intrinsic scatter, suggesting that [C I] is a good tracer of molecular gas mass as CO and dust. We derive a fraction of $f_{rm{[C,I]}} = M_{rm{[C,I]}} / M_{rm{C}}sim3-13$% of the total carbon mass in the atomic neutral phase. Moreover, we estimate the neutral atomic carbon abundance, the fundamental ingredient to calibrate [C I] as a gas tracer, by comparing $L_{rm [C,I]^3P_1,-, ^3P_0}$ and available gas masses from CO lines and dust emission. We find lower [C I] abundances in main-sequence galaxies than in starbursting systems and sub-millimeter galaxies, as a consequence of the canonical $alpha_{rm CO}$ and gas-to-dust conversion factors. This argues against the application to different galaxy populations of a universal standard [C I] abundance derived from highly biased samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا