ﻻ يوجد ملخص باللغة العربية
Context. Direct imaging provides a steady flow of newly discovered giant planets and brown dwarf companions. These multi-object systems can provide information about the formation of low-mass companions in wide orbits and/or help us to speculate about possible migration scenarios. Accurate classification of companions is crucial for testing formation pathways. Aims. In this work we further characterise the recently discovered candidate for a planetary-mass companion CS Cha b and determine if it is still accreting. Methods. MUSE is a four-laser-adaptive-optics-assisted medium-resolution integral-field spectrograph in the optical part of the spectrum. We observed the CS Cha system to obtain the first spectrum of CS Cha b. The companion is characterised by modelling both the spectrum from 6300 $unicode{x212B}$ to 9300 $unicode{x212B}$ and the photometry using archival data from the visible to the near-infrared (NIR). Results. We find evidence of accretion and outflow signatures in H$mathrm{alpha}$ and OI emission. The atmospheric models with the highest likelihood indicate an effective temperature of $3450pm50$ K with a $log{g}$ of $3.6pm0.5$ dex. Based on evolutionary models, we find that the majority of the object is obscured. We determine the mass of the faint companion with several methods to be between 0.07 $M_{odot}$ and 0.71 $M_{odot}$ with an accretion rate of $dot{M} = 4 times 10^{-11 pm 0.4}$ Myr$^{-1}$. Conclusions. Our results show that CS Cha B is most likely a mid-M-type star that is obscured by a highly inclined disc, which has led to its previous classification using broadband NIR photometry as a planetary-mass companion. This shows that it is important and necessary to observe over a broad spectral range to constrain the nature of faint companions
Most stars form in dense stellar environments. It is speculated that some dense star clusters may host intermediate-mass black holes (IMBHs), which may have formed from runaway collisions between high-mass stars, or from the mergers of less massive b
Scattered light high-resolution imaging of the proto-planetary disc orbiting HD100453 shows two symmetric spiral arms, possibly launched by an external stellar companion. In this paper we present new, sensitive high-resolution ($sim$30 mas) Band 7 AL
In the present study we aim to investigate the circumstellar environment of the spectroscopic binary T Tauri star CS Cha. From unresolved mid- to far-infrared photometry it is predicted that CS Cha hosts a disk with a large cavity. In addition, SED m
DZ Cha is a weak-lined T Tauri star (WTTS) surrounded by a bright protoplanetary disc with evidence of inner disc clearing. Its narrow $Ha$ line and infrared spectral energy distribution suggest that DZ Cha may be a photoevaporating disc. We aim to a
We analyze KMT-2019-BLG-1339, a microlensing event with an obvious but incompletely resolved brief anomaly feature around the peak of the light curve. Although the origin of the anomaly is identified to be a companion to the lens with a low mass rati