ﻻ يوجد ملخص باللغة العربية
Color centers in hexagonal boron nitride (hBN) have emerged as promising candidates for single-photon emitters (SPEs) due to their bright emission characteristics at room temperature. In contrast to mono- and few-layered hBN, color centers in multi-layered flakes show superior emission characteristics such as higher saturation counts and spectral stability. Here, we report a method for determining both the axial position and three-dimensional dipole orientation of SPEs in thick hBN flakes by tuning the photonic local density of states using vanadium dioxide (VO2), a phase change material. Emitters under study exhibit a strong surface-normal dipole orientation, providing some insight on the atomic structure of hBN SPEs, deeply embedded in thick crystals. We have optimized a hot pickup technique to reproducibly transfer flakes of hBN from VO2 onto SiO2/Si substrate and relocated the same emitters. Our approach serves as a practical method to systematically characterize SPEs in hBN prior to integration in quantum photonics systems.
Nanoscale optical thermometry is a promising non-contact route for measuring local temperature with both high sensitivity and spatial resolution. In this work, we present a deterministic optical thermometry technique based on quantum emitters in nano
Luminescent defect-centers in hexagonal boron nitride (hBN) have emerged as a promising 2D-source of single photon emitters (SPEs) due to their high brightness and robust operation at room temperature. The ability to create such emitters with well-de
Development of scalable quantum photonic technologies requires on-chip integration of components such as photonic crystal cavities and waveguides with nonclassical light sources. Recently, hexagonal boron nitride (hBN) has emerged as a promising plat
Growing interest in devices based on layered van der Waals (vdW) materials is motivating the development of new nanofabrication methods. Hexagonal boron nitride (hBN) is one of the most promising materials for studies of quantum photonics and polarit
Fluorescent nanoparticles are widely utilized in a large range of nanoscale imaging and sensing applications. While ultra-small nanoparticles (size <10 nm) are highly desirable, at this size range their photostability can be compromised due to effect