1-bit compressive sensing aims to recover sparse signals from quantized 1-bit measurements. Designing efficient approaches that could handle noisy 1-bit measurements is important in a variety of applications. In this paper we use the approximate message passing (AMP) to achieve this goal due to its high computational efficiency and state-of-the-art performance. In AMP the signal of interest is assumed to follow some prior distribution, and its posterior distribution can be computed and used to recover the signal. In practice, the parameters of the prior distributions are often unknown and need to be estimated. Previous works tried to find the parameters that maximize either the measurement likelihood or the Bethe free entropy, which becomes increasingly difficult to solve in the case of complicated probability models. Here we propose to treat the parameters as unknown variables and compute their posteriors via AMP as well, so that the parameters and the signal can be recovered jointly. This leads to a much simpler way to perform parameter estimation compared to previous methods and enables us to work with noisy 1-bit measurements. We further extend the proposed approach to the general quantization noise model that outputs multi-bit measurements. Experimental results show that the proposed approach generally perform much better than the other state-of-the-art methods in the zero-noise and moderate-noise regimes, and outperforms them in most of the cases in the high-noise regime.