ﻻ يوجد ملخص باللغة العربية
In this Letter, we study an Anderson-localization-induced quantized transport in disordered Chern insulators (CIs). By investigating the disordered CIs with a step potential, we find that the chiral interface states emerge along the interfaces of the step potential, and the energy range for such quantized transport can be manipulated through the potential strength. Furthermore, numerical simulations on cases with a multi-step potential demonstrate that such chiral state can be spatially shifted by varying the Fermi energy, and the energy window for quantized transport is greatly enlarged. Experimentally, such chiral interface states can be realized by imposing transverse electric field, in which the energy window for quantized transport is much broader than the intrinsic band gap of the corresponding CI. These phenomena are quite universal for disordered CIs due to the direct phase transition between the CI and the normal insulator.
We study the construction of programable integrated circuits with the help of disordered Chern insulators (CIs) in this letter. Specifically, the schemes for low dissipation logic devices and connecting wires are proposed. We use the external-gate-in
Even though no local order parameter in the sense of the Landau theory exists for topological quantum phase transitions in Chern insulators, the highly non-local Berry curvature exhibits critical behavior near a quantum critical point. We investigate
In disordered two dimensional Chern insulators, a single bulk extended mode is predicted to exist per band, up to a critical disorder strength; all the other bulk modes are localized. This behavior contrasts strongly with topologically trivial two-di
We study charge transport in one-dimensional graphene superlattices created by applying layered periodic and disordered potentials. It is shown that the transport and spectral properties of such structures are strongly anisotropic. In the direction p
We investigate the conductivity $sigma$ of graphene nanoribbons with zigzag edges as a function of Fermi energy $E_F$ in the presence of the impurities with different potential range. The dependence of $sigma(E_F)$ displays four different types of be