ﻻ يوجد ملخص باللغة العربية
The fast and faithful preparation of the ground state of quantum systems is a challenging task but crucial for several applications in the realm of quantum-based technologies. Decoherence poses a limit to the maximum time-window allowed to an experiment to faithfully achieve such desired states. This is of particular significance in critical systems, where the vanishing energy gap challenges an adiabatic ground state preparation. We show that a bang-bang protocol, consisting of a time evolution under two different values of an externally tunable parameter, allows for a high-fidelity ground state preparation in evolution times no longer than those required by the application of standard optimal control techniques, such as the chopped-random basis quantum optimization. In addition, owing to their reduced number of variables, such bang-bang protocols are very well suited to optimization purposes, reducing the increasing computational cost of other optimal control protocols. We benchmark the performance of such approach through two paradigmatic models, namely the Landau-Zener and the Lipkin-Meshkov-Glick model. Remarkably, the critical ground state of the latter model can be prepared with a high fidelity in a total evolution time that scales slower than the inverse of the vanishing energy gap.
In the propagation of optical pulses through dispersive media, the frequency degree of freedom acts as an effective decohering environment on the polarization state of the pulse. Here we discuss the application of open-loop dynamical-decoupling techn
We study the production of low atom number Fock states by reducing suddenly the potential trap in a 1D strongly interacting (Tonks-Girardeau) gas. The fidelity of the Fock state preparation is characterized by the average and variance of the number o
We show a control algorithm to guide a robotic walking assistant along a planned path. The control strategy exploits the electromechanical brakes mounted on the back wheels of the walker. In order to reduce the hardware requirements we adopt a Bang B
I give an epistemological analysis of the developments of relativistic cosmology from 1917 to 1966, based on the seminal articles by Einstein, de Sitter, Friedmann, Lemaitre, Hubble, Gamow and other historical figures of the field. It appears that mo
We introduce a bang-bang shortcut to adiabaticity for the Dicke model, which we implement via a 2-D array of trapped ions in a Penning trap with a spin-dependent force detuned close to the center-of-mass drumhead mode. Our focus is on employing this