ﻻ يوجد ملخص باللغة العربية
Context : Star formation takes place in cold dense cores in molecular clouds. Earlier observations have found that dense cores exhibit subsonic non-thermal velocity dispersions. In contrast, CO observations show that the ambient large-scale cloud is warmer and has supersonic velocity dispersions. Aims : We aim to study the ammonia ($rm NH_3$) molecular line profiles with exquisite sensitivity towards the coherent cores in L1688 in order to study their kinematical properties in unprecedented detail. Methods : We used $rm NH_3$ (1,1) and (2,2) data from the first data release (DR1) in the Green Bank Ammonia Survey (GAS). We first smoothed the data to a larger beam of 1 to obtain substantially more extended maps of velocity dispersion and kinetic temperature, compared to the DR1 maps. We then identified the coherent cores in the cloud and analysed the averaged line profiles towards the cores. Results : For the first time, we detected a faint (mean $rm NH_3$(1,1) peak brightness $<$0.25 K in $T_{MB}$), supersonic component towards all the coherent cores in L1688. We fitted two components, one broad and one narrow, and derived the kinetic temperature and velocity dispersion of each component. The broad components towards all cores have supersonic linewidths ($mathcal{M}_S ge 1$). This component biases the estimate of the narrow dense core components velocity dispersion by $approx$28% and the kinetic temperature by $approx$10%, on average, as compared to the results from single-component fits. Conclusions : Neglecting this ubiquitous presence of a broad component towards all coherent cores causes the typical single-component fit to overestimate the temperature and velocity dispersion. This affects the derived detailed physical structure and stability of the cores estimated from $rm NH_3$ observations.
Stars form in cold dense cores showing subsonic velocity dispersions. The parental molecular clouds display higher temperatures and supersonic velocity dispersions. The transition from core to cloud has been observed in velocity dispersion, but tempe
We present the observation and analysis of newly discovered coherent structures in the L1688 region of Ophiuchus and the B18 region of Taurus. Using data from the Green Bank Ammonia Survey (GAS), we identify regions of high density and near-constant,
Pre-stellar cores represent the initial conditions in the process of star and planet formation, therefore it is important to study their physical and chemical structure. Because of their volatility, nitrogen-bearing molecules are key to study the den
The Galactic Center 50 km s$^{-1}$ Molecular Cloud (50MC) is the most remarkable molecular cloud in the Sagittarius A region. This cloud is a candidate for the massive star formation induced by cloud-cloud collision (CCC) with a collision velocity of
Context. The different theoretical models concerning the formation of high-mass stars make distinct predictions regarding their progenitors, i.e. the high-mass prestellar cores. However, so far no conclusive observation of such objects has been made.