ترغب بنشر مسار تعليمي؟ اضغط هنا

Will Gravitational Waves Discover the First Extra-Galactic Planetary System?

94   0   0.0 ( 0 )
 نشر من قبل Nicola Tamanini
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational waves have opened a new observational window through which some of the most exotic objects in the Universe, as well as some of the secrets of gravitation itself, can now be revealed. Among all these new discoveries, we recently demonstrated [N. Tamanini & C. Danielski, Nat. Astron., 3(9), 858 (2019)] that space-based gravitational wave observations will have the potential to detect a new population of massive circumbinary exoplanets everywhere inside our Galaxy. In this essay we argue that these circumbinary planetary systems can also be detected outside the Milky Way, in particular within its satellite galaxies. Space-based gravitational wave observations might thus constitute the mean to detect the first extra-galactic planetary system, a target beyond the reach of standard electromagnetic searches.



قيم البحث

اقرأ أيضاً

In-spiraling supermassive black holes should emit gravitational waves, which would produce characteristic distortions in the time of arrival residuals from millisecond pulsars. Multiple national and regional consortia have constructed pulsar timing a rrays by precise timing of different sets of millisecond pulsars. An essential aspect of precision timing is the transfer of the times of arrival to a (quasi-)inertial frame, conventionally the solar system barycenter. The barycenter is determined from the knowledge of the planetary masses and orbits, which has been refined over the past 50 years by multiple spacecraft. Within the North American Nanohertz Observatory for Gravitational Waves (NANOGrav), uncertainties on the solar system barycenter are emerging as an important element of the NANOGrav noise budget. We describe what is known about the solar system barycenter, touch upon how uncertainties in it affect gravitational wave studies with pulsar timing arrays, and consider future trends in spacecraft navigation.
In this paper we show in a covariant and gauge invariant way that in general relativity, tidal forces are actually a hidden form of gravitational waves. This must be so because gravitational effects cannot occur faster than the speed of light. Any tw o body gravitating system, where the bodies are orbiting around each other, may generate negligible gravitational waves, but it is via these waves that non-negligible tidal forces (causing shape distortions) act on these bodies. Although the tidal forces are caused by the electric part of the Weyl tensor, we transparently show that some small time varying magnetic part of the Weyl tensor with non zero curl must be present in the system that mediates the tidal forces via gravitational wave type effects. The outcome is a new test of whether gravitational effects propagate at the speed of light.
168 - O. Absil 2010
In this paper, we review the various ways in which an infrared stellar interferometer can be used to perform direct detection of extrasolar planetary systems. We first review the techniques based on classical stellar interferometry, where (complex) v isibilities are measured, and then describe how higher dynamic ranges can be achieved with nulling interferometry. The application of nulling interferometry to the study of exozodiacal discs and extrasolar planets is then discussed and illustrated with a few examples.
The Wide Area VISTA Extra-galactic Survey (WAVES) is a 4MOST Consortium Design Reference Survey which will use the VISTA/4MOST facility to spectroscopically survey ~2million galaxies to $r_{rm AB} < 22$ mag. WAVES consists of two interlocking galaxy surveys (WAVES-Deep and WAVES-Wide), providing the next two steps beyond the highly successful 1M galaxy Sloan Digital Sky Survey and the 250k Galaxy And Mass Assembly survey. WAVES will enable an unprecedented study of the distribution and evolution of mass, energy, and structures extending from 1-kpc dwarf galaxies in the local void to the morphologies of 200-Mpc filaments at $zsim1$. A key aim of both surveys will be to compare comprehensive empirical observations of the spatial properties of galaxies, groups, and filaments, against state-of-the-art numerical simulations to distinguish between various Dark Matter models.
The overwhelming majority of objects visible to LSST lie within the Galactic Plane. Though many previous surveys have avoided this region for fear of stellar crowding, LSSTs spatial resolution combined with its state-of-the-art Difference Image Analy sis mean that it can conduct a high cadence survey of most of the Galaxy for the first time. Here we outline the many areas of science that would greatly benefit from an LSST survey that included the Galactic Plane, Magellanic Clouds and Bulge at a cadence of 2-3 d. Particular highlights include measuring the mass spectrum of black holes, and mapping the population of exoplanets in the Galaxy in relation to variations in star forming environments. But the same survey data will provide a goldmine for a wide range of science, and we explore possible survey strategies which maximize the scientific return for a number of fields including young stellar objects, cataclysmic variables and Neptune Trojans.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا