ﻻ يوجد ملخص باللغة العربية
Strongly anisotropic spin-orbit coupling (SOC) renormalization and strongly enhanced orbital magnetic moments are obtained in the fully self consistent approach including the orbital off-diagonal spin and charge condensates. For moderate tetragonal distortion as in $rm Ca_2 RuO_4$, dominantly planar antiferromagnetic (AFM) order with small canting of moments in and about the crystal $c$ axis are obtained. For reduced tetragonal distortion, we find a tunable regime wherein the magnetic order can be tuned (AFM or FM) by the bare SOC strength and octahedral tilting magnitude. In this regime, with decreasing tetragonal distortion, AFM order is maintained by progressively decreasing octahedral tilting, as observed in $rm Ca_{2-x}Sr_x RuO_4$. For purely planar order, the only self consistent solution is FM order along crystal $b$ axis, which is relevant for the bilayer ruthenate compound $rm Ca_3 Ru_2 O_7$.
Including the orbital off-diagonal spin and charge condensates in the self consistent determination of magnetic order within a realistic three-orbital model for the $4d^4$ compound $rm Ca_2 Ru O_4$, reveals a host of novel features including strong a
A unified approach is presented for investigating coupled spin-orbital fluctuations within a realistic three-orbital model for strongly spin-orbit coupled systems with electron fillings $n=3,4,5$ in the $t_{2g}$ sector of $d_{yz},d_{xz},d_{xy}$ orbit
In atomic physics, the Hund rule says that the largest spin and orbital state is realized due to the interplay of the spin-orbit coupling (SOC) and the Coulomb interactions. Here, we show that in ferromagnetic solids the effective SOC and the orbital
We report a ground state with strongly coupled magnetic and charge density wave orders mediated via orbital ordering in the layered compound tbt. In addition to the commensurate antiferromagnetic (AFM) and charge density wave (CDW) orders, new magnet
We have analyzed the experimental evidence of charge and orbital ordering in La0.5Sr1.5MnO4 using first principles band structure calculations. Our results suggest the presence of two types of Mn sites in the system. One of the Mn sites behaves like