The contact structure of a population plays an important role in transmission of infection. Many ``structured models capture aspects of the contact structure through an underlying network or a mixing matrix. An important observation in such models, is that once a fraction $1-1/mathcal{R}_0$ has been infected, the residual susceptible population can no longer sustain an epidemic. A recent observation of some structured models is that this threshold can be crossed with a smaller fraction of infected individuals, because the disease acts like a targeted vaccine, preferentially immunizing higher-risk individuals who play a greater role in transmission. Therefore, a limited ``first wave may leave behind a residual population that cannot support a second wave once interventions are lifted. In this paper, we systematically analyse a number of mean-field models for networks and other structured populations to address issues relevant to the Covid-19 pandemic. In particular, we consider herd-immunity under several scenarios. We confirm that, in networks with high degree heterogeneity, the first wave confers herd-immunity with significantly fewer infections than equivalent models with lower degree heterogeneity. However, if modelling the intervention as a change in the contact network, then this effect might become more subtle. Indeed, modifying the structure can shield highly connected nodes from becoming infected during the first wave and make the second wave more substantial. We confirm this finding by using an age-structured compartmental model parameterised with real data and comparing lockdown periods implemented either as a global scaling of the mixing matrix or age-specific structural changes. We find that results regarding herd immunity levels are strongly dependent on the model, the duration of lockdown and how lockdown is implemented.