ﻻ يوجد ملخص باللغة العربية
Singlet fission in tetracene generates two triplet excitons per absorbed photon. If these triplet excitons can be effectively transferred into silicon (Si) then additional photocurrent can be generated from photons above the bandgap of Si. This could alleviate the thermalization loss and increase the efficiency of conventional Si solar cells. Here we show that a change in the polymorphism of tetracene deposited on Si due to air exposure, facilitates triplet transfer from tetracene into Si. Magnetic field-dependent photocurrent measurements confirm that triplet excitons contribute to the photocurrent. The decay of tetracene delayed photoluminescence was used to determine a triplet transfer time of 215 ns and a maximum yield of triplet transfer into Si of ~50 %. Our study suggests that control over the morphology of tetracene during deposition will be of great importance to boost the triplet transfer yield further.
Silicon heterojunction (SHJ) solar cells represent a promising technological approach towards higher photovoltaics efficiencies and lower fabrication cost. While the device physics of SHJ solar cells have been studied extensively in the past, the way
Despite many advances towards improving the stability of organic photovoltaic devices, environmental degradation under ambient conditions remains a challenging obstacle for future application. Particularly conventional systems employing fullerene der
The power conversion efficiencies (PCEs) of organic solar cells (OSCs) using non-fullerene acceptors (NFAs) have now reached 18%. However, this is still lower than inorganic solar cells, for which PCEs >20% are commonplace. A key reason is that OSCs
Spin-entaglement has been proposed and extensively used in the case of correlated triplet pairs which are intermediate states in singlet fission process in select organic semiconductors. Here, we employ quantum process tomography of polarization enta
Here we report the development of high-efficiency microscale GaAs laser power converters, and their successful transfer printing onto silicon substrates, presenting a unique, high power, low-cost and integrated power supply solution for implantable e