ﻻ يوجد ملخص باللغة العربية
We introduce a bosonic ambitwistor string theory in AdS space. Even though the theory is anomalous at the quantum level, one can nevertheless use it in the classical limit to derive a novel formula for correlation functions of boundary CFT operators in arbitrary space-time dimensions. The resulting construction can be treated as a natural extension of the CHY formalism for the flat-space S-matrix, as it similarly expresses tree-level amplitudes in AdS as integrals over the moduli space of Riemann spheres with punctures. These integrals localize on an operator-valued version of scattering equations, which we derive directly from the ambitwistor string action on a coset manifold. As a testing ground for this formalism we focus on the simplest case of ambitwistor string coupled to two current algebras, which gives bi-adjoint scalar correlators in AdS. In order to evaluate them directly, we make use of a series of contour deformations on the moduli space of punctured Riemann spheres and check that the result agrees with tree level Witten diagram computations to all multiplicity. We also initiate the study of eigenfunctions of scattering equations in AdS, which interpolate between conformal partial waves in different OPE channels, and point out a connection to an elliptic deformation of the Calogero-Sutherland model.
The non-renormalization of the 3-point functions $tr X^{k_1} tr X^{k_2} tr X^{k_3}$ of chiral primary operators in N=4 super-Yang-Mills theory is one of the most striking facts to emerge from the AdS/CFT correspondence. A two-fold puzzle appears in t
In this talk, we review our recent work on direct evaluation of tree-level MHV amplitudes by Cachazo-He-Yuan (CHY) formula. We also investigate the correspondence between solutions to scattering equations and amplitudes in four dimensions along this
What is the dimension of spacetime? We address this question in the context of the AdS/CFT Correspondence. We give a prescription for computing the number of large bulk dimensions, $D$, from strongly-coupled CFT$_d$ data, where large means parametric
We study periodically driven scalar fields and the resulting geometries with global AdS asymptotics. These solutions describe the strongly coupled dynamics of dual finite-size quantum systems under a periodic driving which we interpret as Floquet con
We use the AdS/CFT correspondence in a regime in which the field theory reduces to fluid dynamics to construct an infinite class of new black objects in Scherk-Schwarz compactified AdS(d+2) space. Our configurations are dual to black objects that gen