ﻻ يوجد ملخص باللغة العربية
Co4Ta2O9 exhibits a three-dimensional magnetic lattice based on the buckled honeycomb motif. It shows unusual magnetoelectric effects, including the sign change and non-linearity. These effects cannot be understood without the detailed knowledge of the magnetic structure. Herein, we report neutron diffraction and direction-dependent magnetic susceptibility measurements on Co4Ta2O9 single crystals. Below 20.3 K, we find a long-range antiferromagnetic order in the alternating buckled and flat honeycomb layers of Co2+ ions stacked along the c axis. Within experimental accuracy, the magnetic moments lie in the ab plane. They form a canted antiferromagnetic structure with a tilt angle of ~ 14 degrees at 15 K in the buckled layers, while the magnetic moments in each flat layer are collinear. This is directly evidenced by a finite (0, 0, 3) magnetic Bragg peak intensity, which would be absent in the collinear magnetic order. The magnetic space group is C2/c. It is different from the previously reported C2/c group, also found in the isostructural Co4Nb2O9. The revised magnetic structure successfully explains the major features of the magnetoelectric tensor of Co4Ta2O9 within the framework of the spin-flop model.
Through analysis of single crystal neutron diffraction data, we present the magnetic structures of magnetoelectric Co4Nb2O9 under various magnetic fields. In zero-field, neutron diffraction experiments below TN=27 K reveal that the Co2+ moments order
Strongly correlated materials with multiple order parameters provide unique insights into the fundamental interactions in condensed matter systems and present opportunities for innovative technological applications. A class of antiferromagnetic honey
Motivated by the recently synthesized insulating nickelate Ni$_2$Mo$_3$O$_8$, which has been reported to have an unusual non-collinear magnetic order of Ni$^{2+}$ $S=1$ moments with a nontrivial angle between adjacent spins, we construct an effective
Among various parent compounds of iron pnictide superconductors, EuFe2As2 stands out due to the presence of both spin density wave of Fe and antiferromagnetic ordering (AFM) of the localized Eu2+ moment. Single crystal neutron diffraction studies hav
The magnetic structure of the nonmetallic metal FeCrAs, a compound with the characters of both metals and insulators, was examined as a function of temperature using single-crystal neutron diffraction. The magnetic propagation vector was found to be