ﻻ يوجد ملخص باللغة العربية
We report the nanoscale conductivity imaging of correlated electronic states in angle-aligned WSe2/WS2 heterostructures using microwave impedance microscopy. The noncontact microwave probe allows us to observe the Mott insulating state with one hole per moire unit cell that persists for temperatures up to 150 K, consistent with other characterization techniques. In addition, we identify for the first time a Mott insulating state at one electron per moire unit cell. Appreciable inhomogeneity of the correlated states is directly visualized in the hetero-bilayer region, indicative of local disorders in the moire superlattice potential or electrostatic doping. Our work provides important insights on 2D moire systems down to the microscopic level.
Transition metal dichalcogenide (TMD) moire heterostructures provide an ideal platform to explore the extended Hubbard model1 where long-range Coulomb interactions play a critical role in determining strongly correlated electron states. This has led
The Wigner crystal state, first predicted by Eugene Wigner in 1934, has fascinated condensed matter physicists for nearly 90 years2-14. Studies of two-dimensional (2D) electron gases first revealed signatures of the Wigner crystal in electrical trans
Moire superlattices in transition metal dichalcogenide (TMD) heterostructures can host novel correlated quantum phenomena due to the interplay of narrow moire flat bands and strong, long-range Coulomb interactions1-5. However, microscopic knowledge o
Stripe phases, in which the rotational symmetry of charge density is spontaneously broken, occur in many strongly correlated systems with competing interactions. One representative example is the copper-oxide superconductors, where stripe order is th
Moire engineering has recently emerged as a capable approach to control quantum phenomena in condensed matter systems. In van der Waals heterostructures, moire patterns can be formed by lattice misorientation between adjacent atomic layers, creating