ترغب بنشر مسار تعليمي؟ اضغط هنا

Multitask Non-Autoregressive Model for Human Motion Prediction

114   0   0.0 ( 0 )
 نشر من قبل Xi Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Human motion prediction, which aims at predicting future human skeletons given the past ones, is a typical sequence-to-sequence problem. Therefore, extensive efforts have been continued on exploring different RNN-based encoder-decoder architectures. However, by generating target poses conditioned on the previously generated ones, these models are prone to bringing issues such as error accumulation problem. In this paper, we argue that such issue is mainly caused by adopting autoregressive manner. Hence, a novel Non-auToregressive Model (NAT) is proposed with a complete non-autoregressive decoding scheme, as well as a context encoder and a positional encoding module. More specifically, the context encoder embeds the given poses from temporal and spatial perspectives. The frame decoder is responsible for predicting each future pose independently. The positional encoding module injects positional signal into the model to indicate temporal order. Moreover, a multitask training paradigm is presented for both low-level human skeleton prediction and high-level human action recognition, resulting in the convincing improvement for the prediction task. Our approach is evaluated on Human3.6M and CMU-Mocap benchmarks and outperforms state-of-the-art autoregressive methods.



قيم البحث

اقرأ أيضاً

The task of predicting human motion is complicated by the natural heterogeneity and compositionality of actions, necessitating robustness to distributional shifts as far as out-of-distribution (OoD). Here we formulate a new OoD benchmark based on the Human3.6M and CMU motion capture datasets, and introduce a hybrid framework for hardening discriminative architectures to OoD failure by augmenting them with a generative model. When applied to current state-of-the-art discriminative models, we show that the proposed approach improves OoD robustness without sacrificing in-distribution performance, and can theoretically facilitate model interpretability. We suggest human motion predictors ought to be constructed with OoD challenges in mind, and provide an extensible general framework for hardening diverse discriminative architectures to extreme distributional shift. The code is available at https://github.com/bouracha/OoDMotion.
Human motion prediction aims to forecast future human poses given a historical motion. Whether based on recurrent or feed-forward neural networks, existing learning based methods fail to model the observation that human motion tends to repeat itself, even for complex sports actions and cooking activities. Here, we introduce an attention based feed-forward network that explicitly leverages this observation. In particular, instead of modeling frame-wise attention via pose similarity, we propose to extract motion attention to capture the similarity between the current motion context and the historical motion sub-sequences. In this context, we study the use of different types of attention, computed at joint, body part, and full pose levels. Aggregating the relevant past motions and processing the result with a graph convolutional network allows us to effectively exploit motion patterns from the long-term history to predict the future poses. Our experiments on Human3.6M, AMASS and 3DPW validate the benefits of our approach for both periodical and non-periodical actions. Thanks to our attention model, it yields state-of-the-art results on all three datasets. Our code is available at https://github.com/wei-mao-2019/HisRepItself.
Predicting future human motion plays a significant role in human-machine interactions for a variety of real-life applications. In this paper, we build a deep state-space model, DeepSSM, to predict future human motion. Specifically, we formulate the h uman motion system as the state-space model of a dynamic system and model the motion system by the state-space theory, offering a unified formulation for diverse human motion systems. Moreover, a novel deep network is designed to build this system, enabling us to utilize both the advantages of deep network and state-space model. The deep network jointly models the process of both the state-state transition and the state-observation transition of the human motion system, and multiple future poses can be generated via the state-observation transition of the model recursively. To improve the modeling ability of the system, a unique loss function, ATPL (Attention Temporal Prediction Loss), is introduced to optimize the model, encouraging the system to achieve more accurate predictions by paying increasing attention to the early time-steps. The experiments on two benchmark datasets (i.e., Human3.6M and 3DPW) confirm that our method achieves state-of-the-art performance with improved effectiveness. The code will be available if the paper is accepted.
Human motion prediction aims to predict future 3D skeletal sequences by giving a limited human motion as inputs. Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend, but motion details such as limb movement may be lost. To predict more accurate future human motion, we propose an Adversarial Refinement Network (ARNet) following a simple yet effective coarse-to-fine mechanism with novel adversarial error augmentation. Specifically, we take both the historical motion sequences and coarse prediction as input of our cascaded refinement network to predict refined human motion and strengthen the refinement network with adversarial error augmentation. During training, we deliberately introduce the error distribution by learning through the adversarial mechanism among different subjects. In testing, our cascaded refinement network alleviates the prediction error from the coarse predictor resulting in a finer prediction robustly. This adversarial error augmentation provides rich error cases as input to our refinement network, leading to better generalization performance on the testing dataset. We conduct extensive experiments on three standard benchmark datasets and show that our proposed ARNet outperforms other state-of-the-art methods, especially on challenging aperiodic actions in both short-term and long-term predictions.
Pedestrian trajectory prediction is a challenging task as there are three properties of human movement behaviors which need to be addressed, namely, the social influence from other pedestrians, the scene constraints, and the multimodal (multiroute) n ature of predictions. Although existing methods have explored these key properties, the prediction process of these methods is autoregressive. This means they can only predict future locations sequentially. In this paper, we present NAP, a non-autoregressive method for trajectory prediction. Our method comprises specifically designed feature encoders and a latent variable generator to handle the three properties above. It also has a time-agnostic context generator and a time-specific context generator for non-autoregressive prediction. Through extensive experiments that compare NAP against several recent methods, we show that NAP has state-of-the-art trajectory prediction performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا