Probabilistic cellular automata for interacting fermionic quantum field theories


الملخص بالإنكليزية

A classical local cellular automaton can describe an interacting quantum field theory for fermions. We construct a simple classical automaton for a particular version of the Thirring model with imaginary coupling. This interacting fermionic quantum field theory obeys a unitary time evolution and shows all properties of quantum mechanics. Classical cellular automata with probabilistic initial conditions admit a description in the formalism of quantum mechanics. Our model exhibits interesting features as spontaneous symmetry breaking or solitons. The same model can be formulated as a generalized Ising model. This euclidean lattice model can be investigated by standard techniques of statistical physics as Monte Carlo simulations. Our model is an example how quantum mechanics emerges from classical statistics.

تحميل البحث