ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual-Teacher: Integrating Intra-domain and Inter-domain Teachers for Annotation-efficient Cardiac Segmentation

175   0   0.0 ( 0 )
 نشر من قبل Kang Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Medical image annotations are prohibitively time-consuming and expensive to obtain. To alleviate annotation scarcity, many approaches have been developed to efficiently utilize extra information, e.g.,semi-supervised learning further exploring plentiful unlabeled data, domain adaptation including multi-modality learning and unsupervised domain adaptation resorting to the prior knowledge from additional modality. In this paper, we aim to investigate the feasibility of simultaneously leveraging abundant unlabeled data and well-established cross-modality data for annotation-efficient medical image segmentation. To this end, we propose a novel semi-supervised domain adaptation approach, namely Dual-Teacher, where the student model not only learns from labeled target data (e.g., CT), but also explores unlabeled target data and labeled source data (e.g., MR) by two teacher models. Specifically, the student model learns the knowledge of unlabeled target data from intra-domain teacher by encouraging prediction consistency, as well as the shape priors embedded in labeled source data from inter-domain teacher via knowledge distillation. Consequently, the student model can effectively exploit the information from all three data resources and comprehensively integrate them to achieve improved performance. We conduct extensive experiments on MM-WHS 2017 dataset and demonstrate that our approach is able to concurrently utilize unlabeled data and cross-modality data with superior performance, outperforming semi-supervised learning and domain adaptation methods with a large margin.



قيم البحث

اقرأ أيضاً

104 - Kang Li , Shujun Wang , Lequan Yu 2021
Annotation scarcity is a long-standing problem in medical image analysis area. To efficiently leverage limited annotations, abundant unlabeled data are additionally exploited in semi-supervised learning, while well-established cross-modality data are investigated in domain adaptation. In this paper, we aim to explore the feasibility of concurrently leveraging both unlabeled data and cross-modality data for annotation-efficient cardiac segmentation. To this end, we propose a cutting-edge semi-supervised domain adaptation framework, namely Dual-Teacher++. Besides directly learning from limited labeled target domain data (e.g., CT) via a student model adopted by previous literature, we design novel dual teacher models, including an inter-domain teacher model to explore cross-modality priors from source domain (e.g., MR) and an intra-domain teacher model to investigate the knowledge beneath unlabeled target domain. In this way, the dual teacher models would transfer acquired inter- and intra-domain knowledge to the student model for further integration and exploitation. Moreover, to encourage reliable dual-domain knowledge transfer, we enhance the inter-domain knowledge transfer on the samples with higher similarity to target domain after appearance alignment, and also strengthen intra-domain knowledge transfer of unlabeled target data with higher prediction confidence. In this way, the student model can obtain reliable dual-domain knowledge and yield improved performance on target domain data. We extensively evaluated the feasibility of our method on the MM-WHS 2017 challenge dataset. The experiments have demonstrated the superiority of our framework over other semi-supervised learning and domain adaptation methods. Moreover, our performance gains could be yielded in bidirections,i.e., adapting from MR to CT, and from CT to MR.
170 - Duo Peng , Yinjie Lei , Wen Li 2021
Domain adaptation is critical for success when confronting with the lack of annotations in a new domain. As the huge time consumption of labeling process on 3D point cloud, domain adaptation for 3D semantic segmentation is of great expectation. With the rise of multi-modal datasets, large amount of 2D images are accessible besides 3D point clouds. In light of this, we propose to further leverage 2D data for 3D domain adaptation by intra and inter domain cross modal learning. As for intra-domain cross modal learning, most existing works sample the dense 2D pixel-wise features into the same size with sparse 3D point-wise features, resulting in the abandon of numerous useful 2D features. To address this problem, we propose Dynamic sparse-to-dense Cross Modal Learning (DsCML) to increase the sufficiency of multi-modality information interaction for domain adaptation. For inter-domain cross modal learning, we further advance Cross Modal Adversarial Learning (CMAL) on 2D and 3D data which contains different semantic content aiming to promote high-level modal complementarity. We evaluate our model under various multi-modality domain adaptation settings including day-to-night, country-to-country and dataset-to-dataset, brings large improvements over both uni-modal and multi-modal domain adaptation methods on all settings.
Robust cardiac image segmentation is still an open challenge due to the inability of the existing methods to achieve satisfactory performance on unseen data of different domains. Since the acquisition and annotation of medical data are costly and tim e-consuming, recent work focuses on domain adaptation and generalization to bridge the gap between data from different populations and scanners. In this paper, we propose two data augmentation methods that focus on improving the domain adaptation and generalization abilities of state-to-the-art cardiac segmentation models. In particular, our Resolution Augmentation method generates more diverse data by rescaling images to different resolutions within a range spanning different scanner protocols. Subsequently, our Factor-based Augmentation method generates more diverse data by projecting the original samples onto disentangled latent spaces, and combining the learned anatomy and modality factors from different domains. Our extensive experiments demonstrate the importance of efficient adaptation between seen and unseen domains, as well as model generalization ability, to robust cardiac image segmentation.
Convolutional neural network-based approaches have achieved remarkable progress in semantic segmentation. However, these approaches heavily rely on annotated data which are labor intensive. To cope with this limitation, automatically annotated data g enerated from graphic engines are used to train segmentation models. However, the models trained from synthetic data are difficult to transfer to real images. To tackle this issue, previous works have considered directly adapting models from the source data to the unlabeled target data (to reduce the inter-domain gap). Nonetheless, these techniques do not consider the large distribution gap among the target data itself (intra-domain gap). In this work, we propose a two-step self-supervised domain adaptation approach to minimize the inter-domain and intra-domain gap together. First, we conduct the inter-domain adaptation of the model; from this adaptation, we separate the target domain into an easy and hard split using an entropy-based ranking function. Finally, to decrease the intra-domain gap, we propose to employ a self-supervised adaptation technique from the easy to the hard split. Experimental results on numerous benchmark datasets highlight the effectiveness of our method against existing state-of-the-art approaches. The source code is available at https://github.com/feipan664/IntraDA.git.
Domain adaptation for semantic segmentation enables to alleviate the need for large-scale pixel-wise annotations. Recently, self-supervised learning (SSL) with a combination of image-to-image translation shows great effectiveness in adaptive segmenta tion. The most common practice is to perform SSL along with image translation to well align a single domain (the source or target). However, in this single-domain paradigm, unavoidable visual inconsistency raised by image translation may affect subsequent learning. In this paper, based on the observation that domain adaptation frameworks performed in the source and target domain are almost complementary in terms of image translation and SSL, we propose a novel dual path learning (DPL) framework to alleviate visual inconsistency. Concretely, DPL contains two complementary and interactive single-domain adaptation pipelines aligned in source and target domain respectively. The inference of DPL is extremely simple, only one segmentation model in the target domain is employed. Novel technologies such as dual path image translation and dual path adaptive segmentation are proposed to make two paths promote each other in an interactive manner. Experiments on GTA5$rightarrow$Cityscapes and SYNTHIA$rightarrow$Cityscapes scenarios demonstrate the superiority of our DPL model over the state-of-the-art methods. The code and models are available at: url{https://github.com/royee182/DPL}
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا