ﻻ يوجد ملخص باللغة العربية
There has been tremendous progress in the degree of realism of three-dimensional radiation magneto-hydrodynamic simulations of the solar atmosphere in the past decades. Four of the most frequently used numerical codes are Bifrost, CO5BOLD, MANCHA3D, and MURaM. Here we test and compare the wave propagation characteristics in model runs from these four codes by measuring the dispersion relation of acoustic-gravity waves at various heights. We find considerable differences between the various models. The height dependence of wave power, in particular of high-frequency waves, varies by up to two orders of magnitude between the models, and the phase difference spectra of several models show unexpected features, including $pm180^circ$ phase jumps.
We present two-dimensional simulations of wave propagation in a realistic, non-stationary model of the solar atmosphere. This model shows a granular velocity field and magnetic flux concentrations in the intergranular lanes similar to observed veloci
We compare maps of scattering polarization signals obtained from three-dimensional (3D) radiation transfer calculations in a magneto-convection model of the solar atmosphere using formal solvers based on the short characteristics (SC) and the long ch
In a recent paper (Straus et al. 2008) we determined the energy flux of internal gravity waves in the lower solar atmosphere using a combination of 3D numerical simulations and observations obtained with the IBIS instrument operated at the Dunn Solar
Context. Small-scale bright features in the photosphere of the Sun, such as faculae or G-band bright points, appear in connection with small-scale magnetic flux concentrations. Aims. Here we report on a new class of photospheric bright points that
We present simulations of magneto-acoustic wave propagation in a magnetic, plane-parallel stratified solar model atmosphere, employing the CO5BOLD-code. The tests are carried out for two models of the solar atmosphere, which are similar to the ones u