ترغب بنشر مسار تعليمي؟ اضغط هنا

Acoustic-gravity wave propagation characteristics in 3D radiation hydrodynamic simulations of the solar atmosphere

117   0   0.0 ( 0 )
 نشر من قبل Bernhard Fleck
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There has been tremendous progress in the degree of realism of three-dimensional radiation magneto-hydrodynamic simulations of the solar atmosphere in the past decades. Four of the most frequently used numerical codes are Bifrost, CO5BOLD, MANCHA3D, and MURaM. Here we test and compare the wave propagation characteristics in model runs from these four codes by measuring the dispersion relation of acoustic-gravity waves at various heights. We find considerable differences between the various models. The height dependence of wave power, in particular of high-frequency waves, varies by up to two orders of magnitude between the models, and the phase difference spectra of several models show unexpected features, including $pm180^circ$ phase jumps.



قيم البحث

اقرأ أيضاً

165 - C. Nutto , O. Steiner , M. Roth 2010
We present two-dimensional simulations of wave propagation in a realistic, non-stationary model of the solar atmosphere. This model shows a granular velocity field and magnetic flux concentrations in the intergranular lanes similar to observed veloci ty and magnetic structures on the Sun and takes radiative transfer into account. We present three cases of magneto-acoustic wave propagation through the model atmosphere, where we focus on the interaction of different magneto-acoustic wave at the layer of similar sound and Alfven speeds, which we call the equipartition layer. At this layer the acoustic and magnetic mode can exchange energy depending on the angle between the wave vector and the magnetic field vector. Our results show that above the equipartition layer and in all three cases the fast magnetic mode is refracted back into the solar atmosphere. Thus, the magnetic wave shows an evanescent behavior in the chromosphere. The acoustic mode, which travels along the magnetic field in the low plasma-$beta$ regime, can be a direct consequence of an acoustic source within or outside the low-$beta$ regime, or it can result from conversion of the magnetic mode, possibly from several such
We compare maps of scattering polarization signals obtained from three-dimensional (3D) radiation transfer calculations in a magneto-convection model of the solar atmosphere using formal solvers based on the short characteristics (SC) and the long ch aracteristics (LC) methods. The SC method requires less computational work, but it is known to introduce spatial blurring in the emergent radiation for inclined lines of sight. For polarized radiation this effect is generally more severe due to it being a signed quantity and to the sensitivity of the scattering polarization to the models inhomogeneities. We study the differences in the polarization signals of the emergent spectral line radiation calculated with such formal solvers. We take as a case study already published results of the scattering polarization in the Sr I $4607~unicode{xC5}$ line obtained with the SC method, demonstrating that in high-resolution grids it is accurate enough for that type of study. In general, the LC method is the preferred one for accurate calculations of the emergent radiation, reason why it is now one of the options in the public version of the 3D radiative transfer code PORTA.
In a recent paper (Straus et al. 2008) we determined the energy flux of internal gravity waves in the lower solar atmosphere using a combination of 3D numerical simulations and observations obtained with the IBIS instrument operated at the Dunn Solar Telescope and the Michelson Doppler Imager (MDI) on SOHO. In this paper we extend these studies using coordinated observations from SOT/NFI and SOT/SP on Hinode and MDI. The new measurements confirm that gravity waves are the dominant phenomenon in the quiet middle/upper photosphere and that they transport more mechanical energy than the high-frequency (> 5mHz) acoustic waves, even though we find an acoustic flux 3-5 times larger than the upper limit estimate of Fossum & Carlsson (2005). It therefore appears justified to reconsider the significance of (non-M)HD waves for the energy balance of the solar chromosphere.
Context. Small-scale bright features in the photosphere of the Sun, such as faculae or G-band bright points, appear in connection with small-scale magnetic flux concentrations. Aims. Here we report on a new class of photospheric bright points that are free of magnetic fields. So far, these are visible in numerical simulations only. We explore conditions required for their observational detection. Methods. Numerical radiation (magneto-)hydrodynamic simulations of the near-surface layers of the Sun were carried out. The magnetic field-free simulations show tiny bright points, reminiscent of magnetic bright points, only smaller. A simple toy model for these non-magnetic bright points (nMBPs) was established that serves as a base for the development of an algorithm for their automatic detection. Basic physical properties of 357 detected nMBPs were extracted and statistically evaluated. We produced synthetic intensity maps that mimic observations with various solar telescopes to obtain hints on their detectability. Results. The nMBPs of the simulations show a mean bolometric intensity contrast with respect to their intergranular surroundings of approximately 20%, a size of 60-80 km, and the isosurface of optical depth unity is at their location depressed by 80-100 km. They are caused by swirling downdrafts that provide, by means of the centripetal force, the necessary pressure gradient for the formation of a funnel of reduced mass density that reaches from the subsurface layers into the photosphere. Similar, frequently occurring funnels that do not reach into the photosphere, do not produce bright points. Conclusions. Non-magnetic bright points are the observable manifestation of vertically extending vortices (vortex tubes) in the photosphere. The resolving power of 4-m-class telescopes, such as the DKIST, is needed for an unambiguous detection of them.
273 - C. Nutto , O. Steiner , M. Roth 2010
We present simulations of magneto-acoustic wave propagation in a magnetic, plane-parallel stratified solar model atmosphere, employing the CO5BOLD-code. The tests are carried out for two models of the solar atmosphere, which are similar to the ones u sed by Cally (2007) and Schunker & Cally (2006). The two models differ only in the orientation of the magnetic field. A qualitative comparison shows good agreement between the numerical results and the results from ray theory. The tests are done in view of the application of the present numerical code for the computation of energy fluxes of propagating acoustic waves into a dynamically evolving magnetic solar atmosphere. For this, we consider waves with frequencies above the acoustic cut-off frequency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا