ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the initial Neumann boundary value problem for a degenerate kinetic model of Keller--Segel type. The system features a signal-dependent decreasing motility function that vanishes asymptotically, i.e., degeneracies may take place as the concentration of signals tends to infinity. In the present work, we are interested in the boundedness of classical solutions when the motility function satisfies certain decay rate assumptions. Roughly speaking, in the two-dimensional setting, we prove that classical solution is globally bounded if the motility function decreases slower than an exponential speed at high signal concentrations. In higher dimensions, boundedness is obtained when the motility decreases at certain algebraical speed. The proof is based on the comparison methods developed in our previous work cite{FJ19a,FJ19b} together with a modified Alikakos--Moser type iteration. Besides, new estimations involving certain weighted energies are also constructed to establish the boundedness.
In this paper, we consider a Keller-Segel type fluid model, which is a kind of Euler-Poisson system with a self-gravitational force. We show that similar to the parabolic case, there is a critical mass $8pi$ such that if the initial total mass $M$ is
We show that the Keller-Segel model in one dimension with Neumann boundary conditions and quadratic cellular diffusion has an intricate phase transition diagram depending on the chemosensitivity strength. Explicit computations allow us to find a myri
In this paper we consider a stochastic Keller-Segel type equation, perturbed with random noise. We establish that for special types of random pertubations (i.e. in a divergence form), the equation has a global weak solution for small initial data. Fu
We study a version of the Keller-Segel model for bacterial chemotaxis, for which exact travelling wave solutions are explicitly known in the zero attractant diffusion limit. Using geometric singular perturbation theory, we construct travelling wave s
We are concerned with the Keller--Segel--Navier--Stokes system begin{equation*} left{ begin{array}{ll} rho_t+ucdot ablarho=Deltarho- ablacdot(rho mathcal{S}(x,rho,c) abla c)-rho m, &!! (x,t)in Omegatimes (0,T), m_t+ucdot abla m=Delta m-rho m, &!! (x