ﻻ يوجد ملخص باللغة العربية
The non-detection of dark matter (DM) particles in increasingly stringent laboratory searches has encouraged alternative gravity theories where gravity is sourced only from visible matter. Here, we consider whether such theories can pass a two-dimensional test posed by gravitational lensing -- to reproduce a particularly detailed Einstein ring in the core of the galaxy cluster Abell 3827. We find that when we require the lensing mass distribution to strictly follow the shape (ellipticity and position angle) of the light distribution of cluster member galaxies, intracluster stars, and the X-ray emitting intracluster medium, we cannot reproduce the Einstein ring, despite allowing the mass-to-light ratios of these visible components to freely vary with radius to mimic alternative gravity theories. Alternatively, we show that the detailed features of the Einstein ring are accurately reproduced by allowing a smooth, freely oriented DM halo in the lens model, with relatively small contributions from the visible components at a level consistent with their observed brightnesses. This dominant DM component is constrained to have the same orientation as the light from the intracluster stars, indicating that the intracluster stars trace the gravitational potential of this component. The Einstein ring of Abell 3827 therefore presents a new challenge for alternative gravity theories: not only must such theories find agreement between the total lensing mass and visible mass, but they must also find agreement between the projected sky distribution of the lensing mass and that of the visible matter, a more stringent test than has hitherto been posed by lensing data.
We present integral field spectroscopy of galaxy cluster Abell 3827, using ALMA and VLT/MUSE. It reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral gal
The lensing and Einstein ring at the core of the galaxy cluster Abell 3827 are reproduced in the modified gravity theory MOG. The estimated effective lensing mass $M_L=(1+alpha)M_b=5.2times 10^{12} M_odot$ within $R=18.3$~kpc for a baryon mass $M_b=1
Galaxy cluster Abell 3827 hosts the stellar remnants of four almost equally bright elliptical galaxies within a core of radius 10kpc. Such corrugation of the stellar distribution is very rare, and suggests recent formation by several simultaneous mer
We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly-magnified, ring-shaped configuration of four images aro
We investigate the mass content of galaxies in the core of the galaxy cluster Abell 611. We perform a strong lensing analysis of the cluster core and use velocity dispersion measurements for individual cluster members as additional constraints. Despi