ﻻ يوجد ملخص باللغة العربية
This paper studies decentralized convex optimization problems defined over networks, where the objective is to minimize a sum of local smooth convex functions while respecting a common constraint. Two new algorithms based on dual averaging and decentralized consensus-seeking are proposed. The first one accelerates the standard convergence rate $O(frac{1}{sqrt{t}})$ in existing decentralized dual averaging (DDA) algorithms to $O(frac{1}{t})$, where $t$ is the time counter. This is made possible by a second-order consensus scheme that assists each agent to locally track the global dual variable more accurately and a new analysis of the descent property for the mean variable. We remark that, in contrast to its primal counterparts, this method decouples the synchronization step from nonlinear projection, leading to a rather concise analysis and a natural extension to stochastic networks. In the second one, two local sequences of primal variables are constructed in a decentralized manner to achieve acceleration, where only one of them is exchanged between agents. In addition to this, another consensus round is performed for local dual variables. The convergence rate is proved to be $O(1)(frac{1}{t^2}+frac{1}{t})$, where the magnitude of error bound is showed to be inversely proportional to the algebraic connectivity of the graph. However, the condition for stepsize does not rely on the weight matrix associated with the graph, making it easier to satisfy in practice than other accelerated methods. Finally, comparisons between the proposed methods and several recent algorithms are performed using a large-scale LASSO problem.
Decentralized optimization, particularly the class of decentralized composite convex optimization (DCCO) problems, has found many applications. Due to ubiquitous communication congestion and random dropouts in practice, it is highly desirable to desi
We introduce primal and dual stochastic gradient oracle methods for decentralized convex optimization problems. Both for primal and dual oracles, the proposed methods are optimal in terms of the number of communication steps. However, for all classes
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex. Our approach consists of approximately solving a sequence of sub-problems induced by the accelera
In this work, we consider the decentralized optimization problem in which a network of $n$ agents, each possessing a smooth and convex objective function, wish to collaboratively minimize the average of all the objective functions through peer-to-pee
Decentralized optimization over time-varying graphs has been increasingly common in modern machine learning with massive data stored on millions of mobile devices, such as in federated learning. This paper revisits the widely used accelerated gradien